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Calculus of Variation and Application

Definition:

The mapping x, — f(x,) is a function x, is an argument of the function f. At the same
time the mapping of a function to the value of the function at a point f — f(x,) is functional

here x,, is a parameter.
Section-1: Calculus of variation

The calculus if variation is a branch of mathematics concerned with applying the
methods of calculus to finding the maxima and minima of a function which depends for its

value or a another function or a curve.

Calculus of variations seek to find to the path, a curve, surface etc for which a given

function has a maximum or minimum. Here the functional is defined by
X2
I = f F(x,y,y") dx
X1

Find the shortest plane curves joining two points (x;,y;) and (x5, y,).

X2
(i.e)., J fl + y'% is extremum
X1

Application:

The Application of the calculus of variations are concerned with the determination of

maxima and minima of certain expressions involving unknown functions.

Condition:

Let y = f(x) be a continuous derivative function defined in the interval (a, b) then,
the necessary and sufficient condition for the existence of a maximum or minimum at a point

X =xy € (a,b)is

1. d—y=0atx=x0
dx
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. . - d?
2. If y = f(x) attains maximum or minimum at x = x, then d—xi' <Oatx = x,
d%y
or Tz >0atx = x,
Result:

Let A = a1x + ayy + azzz + 2a.,xy + 2a43xz + 2a,3yz

1. To find maxima and minima for two independent variables.

Let z be the function of two independent variables say z = f(x,y) in the
region R.

Let the partial derivatives Z—i and Z—i exists and are continuous in R. Let (x,,v,) € R.

W.K.T., The necessary and sufficient condition for the function z have maxima or

minima at the point (x,, y,) € R are Z—i = 0 and Z—; = 0.

We can write, these two equations as a single equation that dz = Z—idx + z—;dy =0

at (x,y,) for arbitrary values of dx and dy.

If z=f(x,y)
af of
dz = adx + Edy
= fidx + f,dy

d*z = d[f,dx + f,dy]
= d[f,]dx + d[f,]dy
= [fuxdx + fiydy]dx + [fy dy + fyxdx]dy
= fxd®x + foydydx + f,,d*y + f dxdy
Hence at (x,, yo) the function z = f(x, y) attains its maximum if
fax t [y <0

fxxfyy - f;czy <0
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And it attain its minimum if
fax + fyy >0

fexfyy = F5 >0

Note

If f = f(xq,x, ..., x,) be continuously differentiable function of n variables has maximum

or minimum value at an interior point of the region df = 0 i.e.,

af of af
df— dx1 62d 2+ +0xndx"_0

At the point for all permissible values of the differentials dx;, dx, ..., dx,,.

Stationary point:

The function f(xy, x5, ..., x,) is said to be stationary at a point if df = 0
e, df = afd +afdx2+ +-L dxn—O

Result-1:

If n variables are all independent, the n differentials can be assign arbitrarily and if follows
of

thatdf =0 == d + dx2 + .4 —dxn = 0 is equivalent to n condition — ™ =0,
X1

oF _ "’_f_

E— 0,...,axn =

Result-2:

If n variable are not independent but are related by say N conditions each of the form
Gr (x4, %2, .., %), k = 1,2,...,N. These N equations can be solved and we can express these
N variables in terms the remaining n — N variables. Hence we can express f and df in terms

of n — Nindependent variables and differentials.

Lagrange’s Multiplier:

Obtain the stationary value of the function f(x, y, z) subject to the constraints

¢1(X,y,Z) = O; ¢2(x,y,z) =0
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Proof:

Let f be a stationary value of the function. For the stationary values we have, df = 0.

(i.e)
of of of
adx +£dy +5dz =0
= fydx + f,dy + f,dz =0 (M

Since the three variables x, y, z must satisfy two auxiliary conditions
$1(x,y,2z) =0 — (@
$2(x,y,2) = 0 — 3

Consider only one variable can be independent from (2) and (3) we ger,

0, 04 (oJoR
TP e 4 P, 4 Py,
ax KTy Wt ¢

(i.e)., P1dx + P1dy + Pp1,dz=0 _____ (4)

0, 0, 0,
922 e + P2, 1 2224,
ax KTy T, 4

(i.e)., Goxdx + Pppdy + o, dz=0 ___ (5)
By solving (4) and (5)

dx and dy can be written in terms of dz.

Then, Substituting dx and dy in equation (1) we get,

df =( )dz=0

Since dz can be assigned arbitrarily, the vanishing of the indicated expression in parenthesis

in this form is a desired condition that f be stationary when equation (2) and (3) are satisfied.

Another method:

Multiply equation (4) by and equation (5) by 4, we get,
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AMipixdx + A1 p1ydy + 41p1,dz=0 ____ (6)
Aa@oxdx + Ay, dy + Aypp,dz=0 ______ (7)
Adding (1), (6), (7),
(fe + M1y + 2¢20dx + (fy + 111y + 2202y )dy + (fy + A1, + A2¢2,)dz = 0__(8)
Arbitrary values of 4, and 4,
Let 1, and A, be determined so that two of the parenthesis in equation (8) vanish.

Then, the differential multiplying the remaining parenthesis can be arbitrarily assigned and

also vanish,

Thus, we have,

[t Mdix + 202, =0 I )|
fy + 11y + A2z, =0 (10
fo + A1z + 4202, =0 (11)

The five equations namely (2), (3), (9), (10), (11) to determine x,y,z, 1, and A,. The

quantities A; and A, are known as Lagrange multiplier.

Note:

1. Lagrange multiplier simplifies the problem also they have physical significance. This
procedure is applicable to the general case of n variables and N < n constraints.
2. The conditions (9), (10), (11) are f + A¢, + A¢, be stationary when no constraints

are present.

1. Determine the point on the curve of the intersection of the surfaces z = xy + 5,

x +y + z = 1 which is nearest to the origin

Let (x,y, z) be the point nearest to the origin, that is, (x, y, z) is a point of intersection

of twosurfaces z=xy+5, x+y+z=1
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We have to minimize

F=(x=02+ -0+ (z-0)
= Jx2+y?+ 22
Therefore, f = x2 + y? + z? subject to the two constraints
pr=z—xy—-5___ (1)

P,=x+y+z—-1___ _ (2)
Since f is minimum, df = 0

df = 2xdx + 2ydy + 2zdz = 0

xdx +ydy +zdz =0 3)

0 0dy Oy
WdX'Fwdy‘l‘EdZ— 0

—ydx —xdy +dz =0 (4)

%dx +%dy +%d2 =0
dx+dy+dz=0 (5)
Choose the multiplier 4, and A, and multiply with the equations (4) and (5)
(4) = —yAdx —xAdy + 41dz =0 (6)
(5)= Aydx+ Ady+2,dz=0 (7)
Adding equations (3), (6) and (7), we get,

(x—yA+2)dx+(y—xA, +A,)dy+(z+ A, +1,)dz=0

x—yh+4,=0____ (a)
y—xA+4,=0 (b)
z+A,+1,=0 (c)

Eliminating A, and A, from (a), (b), and (c)
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1 -y x
> —x y[=0 (o)
1 1 =z
1 -y X

>0 —x+y y—x

0 1+y z—x

=0 (R, >R, —Ry;R3 > R3 —Ry)

> 1[(x+yEZ-x)-A+y)-x]=0
S[-xz+x2+yz—yx—y+x—y?>+xy] =0
= x?—y?—z(x-y)+(x-y) =0
> @x+)x-y)-[x-y»E-D]=0
S>x—yx+y—z+1]=0
Sx—y=0 (or) (x+y—2z+1)=0
Now
(1)>z—xy—5=0
QD=>x+y+z—1=0
x+y—z4+1=0___  (d)
2)=>x+y=1-1z
d)=>1-2z—2+1=0
= —2z+2=0
>z=1
) =>x+y=0
(1)=>—xy—4=0

=>xy=—4
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Whenx =2,y = —> = -2

Whenx=—2,y=—_iZ=2

Thepointsx =2, y= =2; x=-2,y=2
Therefore, The points are (2, —2,1) and (—2,2,1)

The distance for the 1% point (2, —2,1)

=J(2-0)2+ (=2—-0)2+ (1 - 0)2
=>Vi+4+1=3

The distance for the 2" point (=2,2,1)

= J(=2-0)2+ (2—0)2 + (1 - 0)2
>Vi+4+1=3
The required point is 3units distance from the origin

(1)=>z—xy—-5=0

2)=2x—-y+z—-1=0

=>x—y=0_____ (e

=>Xx=Yy

2)=22y+z—-1=0

>z=1-2y
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(1)=>z—-y?-5=0
=>(1-2y)-y*-5=0
= —y2—-2y—4=0

>y2+2y+4=0

—2++4-16
y = 5

_ —2+i2V3
y=7"
y=—-1+iV3

The equation have no real common solution. Hence (2,—2,1) and (—2,2,1) are the

points on the curve of intersection of surfaces nearest to the origin.

2. Find the points on central quadratic surface ¢ = aq1x* + az,y* + az3z* +
2a4,xy + 2a,3y7 + 2a,3xz = constant for which the distance from the origin

is maximum or minimum relative to neighbouring points.

To find the stationary value of f
f=&-072+H-0)>*+(z—-0)°
f=x*+y*+ 22

Since f is stationary, df = 0
2xdx + 2ydy + 2zdz = 0
= xdx +ydy +zdz =0 (D
Given constant ¢ = constant
¢ = a11x% + ayy? + a33z% + 2a1,xXy + 2a53y7 + 2a,3x2

dop = (2a11x + 2a,,y + 2a432 )dx + (2a,,y + 2a,,x + 2a,3z)dy

10
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+(2az3z+ 2a,3y +2aq3x)dz _ (A)
Choose the multiplier 4; and multiply with (A) we ger,
241 (ay1x + a2y + a3z )dx + 211 (az,y + a1,x + ay3z)dy
+201(azzz+ a3y +apzx)dz=0___ (2)
Adding (1) and (2) we get,
[x + 24, (a11x + a2y + a3z )]dx + [y + 22, (az,y + aox + ay3z)]|dy
+[z + 2241(asz3z + ay3y + a13x)]dz =0

X+ 2/11(a11x +a;y + a13Z) =0

—-x
= A

 2(apx +agy + as3z)
y + 241 (azy + agpx + azzz) =0

_ -y
2(azy + agx + ay3z)

=>4

zZ+ 211(a33Z + a3y + a13X) =0

VA

2> =
17 2(assz + azsy + ag3x)

These equations determine the stationary point (x, y, z) on the given surface the
values of A for which the system of equation has a non-trivial solution (x, y, z) are known as
the characteristics values of A. These solutions are the points on the surface which are at

minimal distance from the origin.

SIMPLEST CASE

1. Derive Euler’s equation.

(or)

Determine the condition y = y(x) to maximise or minimise for the

integral I = f;lz F(x,y,y)dx
(or)

11
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Find a continuously differentiable function y = y(x) for which the integral

I=["F(x,y,y")dx takes on a maximum or minimum value and which
X1

satisfies the end condition y(x;) = y; and y(x3) =y,

Proof

y(x) + en(x)

———

Let y = y(x) be a curve joining the points (x4, y;) and (x5, y,)
I = f;‘: F(x,y,y)dx (1) is extremum.

y = y(x) + en(x) be a neighbouring curve joining the points (x4, y;) and (x5, y,), €

is a parameter and n(x) is arbitrary function. n(x;) = 0 and n(x,) = 0

I = f Fry(0) + en(o,y' () + en’(0))dx _____(4)

After the simplification, we get I is the function with respect to €

Since I is extremum, % =0
*2 a aF d JdF (0
f x (y)+ y dx
ay de/  ay' e
X2 a
j T + 3o )]

12
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-/ xz’;-inoc)dx " [j—;,n(x)]:z -/ "zmx)j—x(j—;) dx

*2 oF 0 *2 0
= [ Gpneote g el - [ neo g (57 ax

0= J:ZZ—in(x)dx—J: n(x )dx<g§>dx

- [ D)oo
o oo \a0 )| 1x)ax =
x, L0y dx\dy
oF 0
-Z-4(3)-
dy dx\dy’

Hence if y(x) minimize or maximise the integral I = f;: F(x,y,y")dx must satisfied the
Euler’s equation.

Therefore — (;—;,) Z—; =0

Definition (Euler equation):

The condition for y = y(x) to maximise or minimise the integral I = f;: F(x,y,y")dx is

given by the Euler equatlon — (;—5,) Z—i =
Another form of Euler Equation:

af oF
Euler Equation: _(a_y') Ty 0 (D

. of . . r_dy
Since 3y 1S a function of x,y and y' = ™

d (0f\dx of of \dy' OF
(1)=>—( )—+ ( ) +— ( ) =
dx \dy'/ d oy \dy'/dx ady'\dy'/ dx By
d (0 da (0 d (0 oF
2 A -0
dx \ay'/ ody\ay’ dy’ ' \ay' dy

13
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= Fy’x + Fyryy’ + Fylyly” — Fy =0
Note -1:

The three forms of Euler Equation,

L &G 5=

2. Fyy 2+ Fy, 2 4 Fp—Fy = 0

3 (G —a) %) =0
Note -2:

1. F isindependent of x in Euler equation, then g—i =0

Euler Equation: —(i (F - a—fd—y) - a—F) =0

dx dy' dx 0x
d (F af dy)
dx dy' dx
=>F of dy tant
3y dx = constan
2. F isindependent of y,g—F =0
Euler equation: —(;—;,) 2—5 =0
= & (5y) =
dx \dy'’
d
f = constant
ay’
r Of
3. Fisindependent of y Yoyt = =0
Euler equation: _(:Tf) — g—; =
6F _o
~ oy
Definition:

The solution of the Euler equations are known as extremals of the given problem

14
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Definition:

An extremal which satisfies the appropriate the end condition is called stationary function
of the problem.

1. Show that the shortest distance between two points in a plane is a straight line.
Let the points in the plane be (x4, y1), (x2, V)

To minimise the curve y = y(x)
To minimise the integral I = f;lz 1+ y'% dx

W.K.T,I = f;:F(x,y,y’)dx

Here F = /1+y’2

Euler equation,
(af) oF
dx ay’ dy
d
= S (Fa+yEe@y))-0=0

d_ ¥ \_
dx
/1+y’2/
12 .11 /1 2 —l /; 1
L+y*y" =y'5A+y")z2y)y
=

2

(/1+y’2>
12 12

= f1+y’2 y" =
/1+y/2

. (1 + ylz)yn _ yIZle

=0
/1+y’2
= y + yIZyII _ yIZyII =0
=>y"=0
d?y
5>—=0
dx?

15
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Int ti = dy =
ntegrating i a

Integrating = y(x) =ax+b

2nd Method:
Here F is independent of x, then
oF

F ——v' = constant
ay’y

1 1
,/1 +y'? - 5(1 +y'2)72.2y".y' = constant
12
/1 +y'%— Y constant
/1 + y’2

1+y'?)—y?
( Y ) Y = constant
/1+y’2
1 1
ﬁ —_——
, k
1+y'

= ’1+y’2=k

Squaring on both sides

=1+y"7? = k?
>y?2=k?-1
2>y =+k?—-1=a
=>y' =a

dy
= — =

dx @

Integrating = y(x) =ax+b
3rd Method:
Here F is independent of y, then

oF fant
dy constan

16
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1 1
5(1 + y'2)72(2y") = constant

!

=4 y— = constant

f1+y’2
=>y’=c/1+y’2

Squaring on both sides
ye=ct(1+y")

c
2 __
Y 1—c2
. c
y:

V1 —c?
dy_
dx_a

Integrating,y(x) = ax + b

2. S. T the minimal surface of revolution passing through two given points be
catenary.
Let P and Q be two points in a plane.
P and Q can be joined by infinite number of curves each curve will generate a surface,
where it is rotated through 2w about the x —axis.

Here to find the curve which will give the minimum surface area

X2
sz F(x,y,y)dx
X1

X2
sz 2my /1 + y?dx

X1

17
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Here F = y/1+ y'?

ion: L (2L _ 9F _
Euler equation: dx( ,) =0

ady dy
d 1 12 —1 !
a[yi(l‘f‘y )2.2y]—\/1+}/’2=0
d !
_L]_ 157 =
dx|\/1+y'2

1 12 " [ _yyll 1 12 —%2 Ia, 0
VI+y2Qy" +y'y) —=5=Q+y") 22y'y
—yJ1+y?%2=0

W1+’
1211
1+ v2(yy" +v2) XY Y
VI+y2yy" +y) W_
(1+y?)
12,11

1+ 12 Il+ 2y _
A+y)y" +y™) WY Tyi=o0
JI+y2(1 +y2)
yyll+yI2 +yylly12 +yl4_yy12yn_(1+y12)2 =0
yyrl+y12+yl4_1_yl4_2y12 =0

1+y2=0

y'=y?-1=0____ (A
Lety' =p
., dp dp dy
Y TP Ty T dy dx
. dp
y =P@

— =1 2
ypdy +p
pdp__ dy
1+p% y

18
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Integrating,
1
Elog(l + p?) =logy +logc
1
log(1 + p?)2 — logc = logy
JV1+p?
c

log = logy

57 _

c

1
y=ay1 +p2,wherez= a

y? =a’(1+p?)

dx a
dy  dx
N
y
cosh™! (E) =_+b

% = cosh (Z + b)
y = acosh(g+b)
2"d Method:

: oF
Euler equation: F — a—y,y’ = constant

19
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1 1
yV1+y? =1 +y"?)72.2y"y" = constant

12

Yy

i+

y(A+y®) —yy”?

vy

Y

e T
y=-cy1+y"?

y? =c?(1+y'?)

yJ1+y?— c

y2 = ¢ + c2y"
dy\*
2 _ 2 _ 2%
yi=et =t (3)
) -5
dx) ¢
dy _y*—c?
dx ¢
dy dx

Integrating,

%zcosh(§+b)
y=ccosh(§+b)

Brachisto Chrome Problem:

20
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(or)

Find the shortest time of the curve

0,0)

 *Pxy)
x o (x1,¥1)
A

Suppose a particle starts from rest at a point (0,0) and slides down the curve at OA.

Let P(x, y) be the position of the particle at time t. If v is the velocity of the particle at a time

t.

v =29y

ds

—=/2
dt gy

ds = /2gydt
W.KT.,, ds=+1+y?dx
V14 y?dx =,/ 2gydt

1+ 97
de=Y""Y" 4y

29y

21
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(=)

r=[" (J%) ix

In Euler equation,
X2
I=j F(x,y,y)dx

Here F(x,y,y") = “132

Here F is independent of x
oF

F ——y' = constant

d
Ji+y? 1
IR
Ji+y? y'? 3

NN A e T

1+y’2—y’2_

B

1

iyt
Jy/i+y?2=c

1 12 —1 I,
S@+y*)y22yy =c

Puty’ = cot@

\/;\/ 1+y?=c
\/;\/1+cot29 =c
ﬁ\/ cosec? 8 =c

22
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Yy =7
\/_ Vcosec? 0
\/;z csin@

y = c?sin? 0

_ 2(1—c0529>
y=¢ 2

y = a(l —cos20)
Now,

dx dxdy
de dyde

1
=—a(2sin26)
y

o0 2asin 20
2a (2sin 6 cos 0)

cos @
sin @

= 4asin? 0

_4 (1 — cos 20)

= 2a(1 — cos 260)

Integrating,

sin 29)

=2 -
X a(@ >

20 — sin 260
=2a( 2 )

= a(26 — sin 260)

23
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The required curve is y = a(1 — cos 20), x = a(20 — sin 26) which is the equation of

cycloid.

Natural Boundary Conditions and Transition Conditions:

The value of unknown function y(x) is not preassigned at one or both of the end
points x,, x,, the difference en(x) between the true function y = y(x) and the variate

function y = y(x) + en(x) need not vanish.

In Euler equation derivation, we used n(x;) = 0 and n(x,) = 0, but here, the

variation is such that (n(x;) # 0 or n(x,) # 0) or (n(x;) # 0 and n(x,) # 0)

The equation is

[T - &G meee o] -

X1

This is true all permissible variation en(x). It must vanish for all variations which are zero at
both ends. i.e., n(x;) = 0and n(x,) =0

We get,

[ -Gl o=

X1
Therefore, we yield an Euler equation.
Note:

1. Now,

oF %) oF (x) = 0
ay,nxz ay,nxl -

Since n(x;) and n(x;) are arbitrary, the co-efficient must vanish.

(aF) _0 <BF> _0
ay’ o ay’ N

X=xq X=Xy
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If y(x;) is not given, then (;—;) =0

X=X1

), =0

X=X

If y(x,) is not given, then (

Avre called the Natural Boundary Condition of the problem.

2. If y(xy) is preassigned as y,, whereas y(x,) is not given then the boundary condition

is y(x;) = y; and (;’TF) =0

X=Xy

Similarly, other boundary condition is y(x,) = y, and (:—5,) =0

X=X1

Euler Equation:

oF d (9F . : o i
When 3y and - (6y’) are discontinuous at one or more points inside the integral.

Consider I = fxz F(x,y,y")dx where F may be such that any one or both the terms of

oF
— (ay ) and — are discontinuous at one or more points inside the integral.

Assume that there is only one point of discontinuity at x = ¢ then

20| nGodx+ [ n(x)]

X2
.f dy dx ay ay’

Taken the form

],: [g_i_ﬁ<ay >] n(x)dx "'sz E_E(ay )] n()dx + + [a ,n(x)]
+ [g—;n(x)]i =

Assume that the minimizing function y = y(x) is continuous at x = c, all the admissible

function y(x) + en(x) have the same property.

Therefore, we have n(c*) = n(c™) = n(c)
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[} 5 -Gl nete [5G 55 oo

+ [(jj) 16~ (5) n(c*)l =0

X=X x=c

[} 5 -Gl nete [5G 55 oo

+ (2_5,) n(xz) — (g_j,) _ Tl(x1)l

X=X

|55, .- )

xX=c x=c~

77(6‘)] =0

[ Gl e [ [5G oo
(&) () ][ (D) |-

X=Xy x
Hence Euler equation must hold in each of the subintervals (x4, ¢) and (c, x;) if ;—; vanish at

x=ct

any end points x = x; or x = x, where, y is not prescribe and also the natural transaction

condition called y(c*) = y(c™) (a)

, lim O — lim 2£ _____(b) must be satisfied at the point x = ¢
' xoct 0y x—c 0y’

Note:

1. The condition (a) says that y is continuous at x = ¢

2. The condition (b) says that the derivative y’ is discontinuous at that point.

1. Determine the stationary function associated with the integral I =

f01(Ty’2 — p*w?y?)dx where T, p, w are given constant.
GivenI = fol(Ty’2 — ptw?y?)dx

Here F = Ty'? — p?w?y?
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To find: The stationary function it must satisfy the Euler equation.

d(aF) aF_
dx \dy’ B

d
= CTY) = (=2p*w?y) = 0

2Ty" + 2p*w?y =0

Ty" + p?w?y =0

. _pza)zy
Y T
2,,2
y'" = —a?y where a? = 22
y" +a’y =0
d?y
2., —
w +a‘y=0
(D2 +a®)y=0
The auxiliary equation is m? + a? = 0
m2 = —q?
m = tia
Y = ¢4 COS ax + ¢, sin ax (D)

Case-1:
Let the condition y(0) = 0,y(1) = 1 be prescribed
(1) = y(x) = cycosax + ¢, sin ax
y(0) = ¢, cos 0+ ¢, sin 0
cg =0

y(1) =cycosa+ ¢, sina
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1=0+c¢,sina

1
sina

Cy =

sin ax

=0
y(x) +sina

sinax
= — if « #0,m, 2m, 3m, ...
sina

Case-2:

Let the condition y(1) = 1 be assigned but y(0) is not assigned.

If x = 0 is not given (;—yp,) =0

x=0
(1) =>y(1) =cycosa+c,sina
1=ccosa+c,sina (2)

(6F) _0
dy’ N

x=0

2Ty )y=0 =0,y ' =0atx =0
(1) =>y'(x) = —ac; sinax + ac, cos ax
y'(0) = —ac,sin0 + ac, cos 0
0=uac,
c;, =0

2)=>1=ccosa+0

_ 1
Cl_cosa
D =2>ykx) = cosax+0
cosa
_cosax ¢Tl’ 3w 57w
_cosala 2'° 27277
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Case-3:

Neither y(0) nor y(1) not preassigned.

i.e., (66—5,) =0 =0and (:5,) ., =0

X X

Now,
&),
9¥'/ =0
2Ty ) =0 =0
y'=0atx=0
(1) > y'(x) = —casinax + c,a cos ax
y'(0) =0+ cyacos0
=>ca=0
=c¢,=0
).~
0¥/ 41
(2Ty")x=1 =0
y' =0atx=1
(1) = y'(x) = —c;asinax + c, cos ax
y'(1) = —ciasina + ¢, cosa
0=—casina
c;=0
(1) = y(0) =0
=>y=0
Case-4:
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Let F be discontinuous at x = ¢

LetT =T, p=p1, w =wq, where0 <x <c

T =T, p = Pz, W = Wy, wherec <x <1

Where Ty, T,, p1, P2, w1, W, are positive constants and y(0) = 0 and y(1) = 1 are given
Now, by the case-1, we have,

y(x) =cicosayx +cysinayxfor0 <x <c

2,2
p2w3z

2

y(x) = c;cosax + ¢y sina,x forc <x < 1land a3 =

Now, the natural transition conditions are,y(c*) = y(c™)

I oF I oF
=z xoer dy' s ay’

= 2T, lim y'(x) = 2T; lim y'(x)
x—-ct x—-c~
=T, limy'(x) =T, lim y'(x)
x—-ct x—c~
These are the equations for natural transition conditions.

The Variational Notation:

Let F be the set of function which satisfy the certain conditions:

Any quantity which assigns a specific numerical value corresponding to each function in F is

said to be Functional on the set.

Example:

Define F — V the set of all functions of a single variable x which possess the continuous 1%

derivative at all points in an interval a < x < b, then the integral
b
b= [ yeods
a
Is a function on F and
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b 2
I, = f ly@y" @) = (v' )] dx

Is also a function on F

Definition:

Consider the integrant of the form = F(x, y,y") F, for a fixed value of x depends upon

the function y = y(x) and its derivative.

Let y(x) be a function to be determined while changing y(x) into a new function

y(x) + en(x). The change en(x) in y(x) is called variation of y and it is denoted by

8y = en(x).

Definition:

Corresponding to the change in y(x) for a fixed value of x, the functional changes by

an amount AF where
AF = F(x,y+en,y' +en’)=F(x,y,y")

oF oF
AF = Een + a—y,er]’ + terms inovling higher power of €

The 1% two terms in the above equations are defined to be the variation of F

Therefore,
5F = doF N oF |
N dy €n ay’ n
Note:
1. F=y
O6F = 6y

_OF OF
o0y =5, €en(x) + 75 en’(x)
Equating the coefficient of en(x) and en’(x) we get,

oOF " JoF
ay_ "ay’
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Therefore, when F = y, §F = en(x)

2. F=y'
6F =8y’

y __ 0 a ’
8y =5 en(x) + 5w en'(x)
oF oF
en'(x) = 3o en) + gren' ()

Equating the coefficient,

OF _ OF
dy ' dy’

Therefore, when F = y', §F = en'(x)

3. Combining the variation of F and y we get,

S5F aFa +6F5' 1
ayy 3y (1)

LetF = F(x,y,y)
By the definition of differential we have,

oF oF oF

O6F :6_6x+6_6y+6 -6y’
Since x is fixed, 6x = 0
Therefore,
O6F = Z—F(?y + (;')F, &y’ (2)

There is an analog between equation (1) and (2).
Note:

The differential of the function is the 1% order approximation to the change in that
function along the particular curve while the variational of the function is the 1% order

approximation to the change from curve to curve.
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Result:

1. 6(F1 + Fz) = 6F1 + 8F2
2. 6(F1F2) == F16F2 + F26F1

F; F,6F,—F,0F.
3. 6(_1)2 2 121 2
F F}

General Case: [Analog definition]

Let x, y be independent variables and u, v be dependent variable.

Consider the function F = F(x,y,u, v, uy, Ux, Uy, v),). FiX x,y and vary both u, v into new

function u + €€, v + en and define the variation as follows:

ou = €é(x,y),6v =en(x,y)

Hence the change in variable is given by,

g OF L OF OF _ OF  OF _ oF
"~ du € av ou, €6 v, €M ou, €Sy av, My

+ terms involving higher powe of €

oF oF oF oF oF oF

AF = — —_— —_ —_— N S
ou €+ v + U, €6t 0V, €M+ du, €yt dv,, My

_oF, OF . OF OF  OF  OF
“ou " T vV T w0t Ty, OTX ou,, Uy av, Yy

Result-1:

If x is independent variable, then &, ;—x are commutative.

(ie) = ©0y) =6 (2)
Proof:

W.K. T., 8y = en(x) and 8§y’ = en'(x)

d d
=) =— (en(x))
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Therefore, § and :—x are commutative.
Result-2:

If x and y are independent variable, then 6,:—x and aa—y are commutative.

(ie.) ;—x(5u) =6 (Z—Z) and % (5u) = & (g_;)

Proof:

W. K. T., 6u=€&(x,y)and v = en(x,y)
d d
o (0w = 5(65 ()
9
= Ea(f('x' }’))

= €o— = €§y

ox

= U,

-5(5)

Now,

0 s _ 0
@( u)—@(ef(x,y))

0
=5, (§(xy)
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Lemma-1:

The derivative of the variation with respect to the independent variable is the same as

the variation of the derivative

ie.,

Proof:

&y = en(x) and 6y’ = en'(x)

d d
T (6y) = T (en(x))
d
= ea(n(x))
= en'(x)
= Sy'

Note:

The above lemma is true only when the differentiation is with respect to an independent

variable. In general case, it is not true.

Example:

1. Letx and y be two independent variable t.
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Now,

dy dy/dt
dx dx/dt
! d dx

- ro e = oIl
=2 wherey' =y = and x' = x =T

_ ()& (Cc%) (di)(gx

dx dx\°
@ (@)
d dy/dtd/dt(6x)
=——(6y) -
dx dx/dt dx/dt

d dyrd
=~y - 2|60

If x is independent, 6x = 0,

y'\ _d
5(;) —a(fs}’)

If x is dependent, then lemma is not true.

Note:

The quantity §F is called First variation of F. The second variation is defined
as the group of second order terms in € in the equation AF
Result:

Let F be a functional expressed as the definite integral I = f:lz F(x,y,y)Hdx,

there exists a independent variable.
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X2
ol = 6f F(x,y,y)dx
X1

X2
=f OF (x,y,y")dx

X1
Theorem -1:

For a stationary function, the variation of the integral is zero.

(or)

The integral [ is stationary if and only if its variation is vanishes.

ie., 8l = 6[512 F(x,y,y")dx = 0 for every permissible variation &y.
Proof:

Let the integral I = f;: F(x,y,y")dx be stationary.

To Prove: 61 =0

I is stationary = Euler’s equation satisfied.

2oy or_
"dx \ay’ ay

X2
ol = 6] F(x,y,y)dx

X1

f 6 F(x,y,y")dx

X2
- G

—szaFS d +szaF6 'd
B ady yax ay' yax

f@&/dx f 6’

_szaF6d+J aFd(a)d
) ey oy’ dx Y

X1 y X1

=[Gl o] [ o)
~ )y ey T, Yax\ay)

X1
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Assume that 51 = 0
To prove: I is stationary

i.e. T.P: It satisfies the Euler’s equation

X2
ol = 6[ F(x,y,y)dx =0
X1

X2
f 6F(x,y,y)dx =0

f"z oF

vy L0y
fxzaéd+szaF6 'd 0

— X X =

x 0¥ Y x 0¥’ g

j-xza_FSydx+f (dy)dx—O
2 0V ay’ d

*2 oF

3y 6ydx+f 3y (6y)dx—0

X1

[ el f‘sd(aF)d-
ay Y X T oy Y L Ydx *

%1 a9y’
fxz(a—F—i<aF)>6ydx=O
x, \0y dx\dy’
AR
dy dx\dy'

= | is stationary
Note:

The stationary function for the integral functional is one for which the variation of that
integral is zero. Hence for a stationary point of the functional, the differentiable of the function

is zero.

Green’s Theorem:
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If cp,Z—f,Z—i are defined and continuous on the simple region R bounded by piecewise

smooth simple curve C then,

ff dx dy = ygqbcosts
ff dx dy = qubsm 0 ds

Where s is the arclength along the curve C, and 8 is the angle between the positive direction of

the x —axis and the outward normal drawn at a point on the curve C
Theorem-2:

P. T. the necessary condition for the integral I = ffR F(x, Y, U, U, Uy, Uy, Vy. vy) dx dy to take

maximum or minimum value is given by

0 (6F)+ d [ OF oF
dx \0u, dy \du, ou
d <6F)+ d (0F oF
ox \dv,) ~ dy\ov,) ov

(or)

Derive Euler equation for the more general case using Green’s theorem.
Proof:

Let us consider the case when the integral to be maximised or minimised is of the

form I = ffR F(x, Yo Uy U, Uy, Uy, Uy vy) dx dy (4)

Here x and y are independent variable, u and v are continuously differentiable function of x

and y. R is the two dimensional region in the xy — plane.
The condition for I to take maximum or minimum value is 61 = 0

i.e., The condition for stationary is 61 = 0
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Sl = 6ffF(x,y,u,v,ux,uy,vx.vy) dx dy =0
R

:ff aF(s 5+a sup+ 2 s+ 2 s+ 2 50 Yax =0 1
Y00 T w0 T g, O T gy, OV Ty, O ) 4 T 1

Here, 6u and &v are to continuously differentiable over F and must vanish on the boundary C

when u(x, y) and v(x, y) are arbitrary function defined along the curve C

In order to transform the terms involving, the variation of derivatives we make use of the

Green’s theorem and the formula

ﬂ—dxdy £¢c059ds (2)

ff —dxdy = qubsm 0 ds (3)

Where 8 is the angle between the positive x —axis and the outward normal at a point of the

boundary C of R and s is the arclength along C

Now,
ﬂ—@uxdxdy ﬂ dxdy
(Su) dx dy (4)
Consider
6(6F6> oF 0 4 6<6F)
dx \du, u du, Ox dx \du,

:>6F<66)_6<6F6) 66(6F)

o, \ax °%) T ax \aw, °) T % ax \au,

= [ o= [ (22 ) 2o
du, Otx XA = ox aux Yox ou, xay

- [l o) e a(‘”)d :
— J)g0x \ou, ray R “ox ou, ray
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=f—6ucos€ds—f ____ 5
Now,
ﬂ. 6uy dx dy = ﬂ. dx dy
ﬂ. (6u) dx dy
Consider,
0 (’)F6 _6F6(6)+66 oF
ay\ow, ") T au oy 0 T Moy \ oy,
=>aF(aa)_a aF(S 66 oF
duy, \0y u ~ dy du,, u ”ay du,y,
Therefore,
ﬂ du, dx d ﬂ du 0 (9F dxd
Uy ey =11 oy auy ay \ow, )|
ﬂ 6 dx d f § 0 (9F dx d
ay\a uldxdy — ’ uay ou, x dy
faFS in 6 d J ) a<6F>d d (6)
= —ousin S — U—\— X
cou, g 0y \ou, Y
Similarly,

oF oF
U GO0 dx dy = 3@6—5vcoseds—U 5v— a—)dxdy 7
x

ff@ dvy, dx dy = f—&]sm@ds—ﬂ‘(?v—( >dxdy ____ (3
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(1):>J.f 6udxdy+ﬂ. 517dxdy+ﬂ.a du, dx dy +ffa duydx dy
ff dvy dx dy +ffa Svy, dxdy =0

Substitute equations (5), (6), (7) and (8), we get,
9 (oF
ffR Sudxdy + ff 6v dx dy + ¢ —6ucos€ ds — [, Sua(a) dx dy +
oF . a (oF oF
ﬁC%Susm 6.ds— [, 6u5<a) dx dy + gﬁca&wose ds —

a (oF oF o . a (oF
HR‘st(@)dx dy +gﬁca6vsm0 ds—ffR&J@(a)dx dy =0

ﬂ ) d [ OF 6dd+ﬂ a(aF) d (O0F Sv dody +
ox aux ay \aw, )| 7" Y av  9x\av,) oy\av, )| " T

oF oF oF oF
jg ——cosO +——sin@ 6uds+j£ —c0sf +—sinf |6vds =0
ou, ou,, c \ 0y vy,

If the variation du and 6v are independent of each other then the coefficient of Su and v inside

the double integral must each vanish in R giving rise to the Euler’s equation
JoF 0 (aF > 0 (0F\ )
du Jx \du, dy \du,, B

JoF (’)(E)F) d (0F _0
v dx\ov,/ dy\dv,)

The Natural Boundary Condition:

When u is not prescribed on C,

OF 056 +2F Ging =0
aux COoSs auy Sinod =

When v is not prescribed on C,

oF 0 + oF 6=0
0, cos ov, sinf =

The two Euler’s equations are linear and called Quassi linear equation.
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The two Euler equation represent the necessary equation that the equation I =
f;lzF(x,y,u,v,ux,uy,vx.vy) dx dy takes maximum or minimum value subject to the

boundary condition along C.
Note:

If the integrant F involves n independent variables and m independent variables
together with the partial derivatives of various order with respect to x and y we obtain the Euler

equation of m independent variables.

The equation corresponding u is of the form

d 0 0?2 0?2 0?2
E, — (aFux + @Fuy + ) + WFuxx + axayFuxy +a—yzFuyy + -

03 0*
— ﬁFuxxx'*'"' + @Fuxxxx‘l'"' —.=0

1. Obtain the partial differential equation satisfied by the equation of minimal

Applications:

surface.
Or
Find the surface passing through a simple closed curve € in space having

minimum surface area bounded by C

Assume the equation of the surface as z = z(x, y)
Then the area to be minimised is given by the integral § = ffR,/l +z¢ + z5dx dy

where R is the region in the xy —plane bounded by the projection C, of C onto the
xy —plane, and where z is along C,

Here,

1
F= [1+z2+z3=(1+2z2+2z})?

Euler equation is given by
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oF a(aF) d (OF — 0 1
dz 0x\0z,/ 0y\0z, =0— M

oF _
0z
JoF 1 -1
a—ZxZE(l‘f'Z,%‘f‘Z)Z,)ZZZx
Zy

J1+2zi+2z3

a(aF)_ 6( Zy )
0x\0zy/  0x\\[1+ 72 + 72
1

1 =
JI+22+22 2y — 2,5 (1 + 22 4+ 22) 2(2232xx + 22y2y5)
— 2
1+z¢+2z3

1
Y1+t 22 + 2% Zyy — (1 +z2 + 232,) 22:0(ZxZyx + ZyZyyy)

B 1+Z,%+232,

2 2 2
_ (1 +zy + Zy)Zxx — ZyZyx — ZxZyZyx

3
(1422 +22)?

2
 Zyx + ZyZyy — ZyZyZyy

3
(1 +z2 + 232,)E

d <6F>_ zy
dy\0zy) [1+2z}+7z2

d <6F>_ d < Zy >
dy \0z, 0y \\/1 + z% + z2
1

1 =
V1+zi+2z5zy — 2,5 (1422 +22) 2(2zyzyy + 22,2yy)
1+z¢+2z3
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2 2 2
B (1 + 2z + Zy)Zyy — ZyZyy — ZyZyZyy

3
(1422 +22)?

2 —
_ Zyy + ZyZyy — ZyZyZyy

3
(1 +z2 + ZJZ,)E

2 — 2 —
1) > Zux & ZyZxx — ZxZyZyx |  |Zyy T ZxZyy — ZaZyZyx| _ 0
3 3 -
2 2)2 2 2)2
(1+Zx+Zy) (1+Zx+Zy)

2 2 —
= Zyx * ZyZyy — ZyxZyZyy — Zyy — ZxZyy — ZxZyZyy = 0
= Ze (14 22) + 2, (1 + 22) — 22,22y, = 0

=>r(1+q%) +t(1+p?)—2pgs =0

Wh _ 0z _ _ 0z _ _ 9%z _ _ 9%z _ 0%z _
erep—a—zx,q —E—Zy,T—E—Zxx,S—mny, —W—Zyy

Laplace Equation:

0’¢ 0°¢  9%¢
2 = =
ve= d0x?  0dy? + 0z2 0

Is called the Laplace equation.

Dirichlet problem:

The problem of determining the function ¢ which satisfy the Laplace equation in the

region R is called Dirichlet problem.
Gradient:
The gradient is V2¢. i.e..,
V2 = (bl + by + d,K) (T + by + b,K)
=i+ ¢y + 7

Note:
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The dirichlet problem is equivalent to the variational problem. The solution to the

dirichlet problem can be determined by the means of Euler equation of a suitable variational

problem and conversely.

1. Find the function ¢(x, y, z) for which the mean square value of the magnitude of

the gradient over the region R of the space is minimum when ¢ is given on the

boundary of R.

The problem is that we have to find ¢ such that & [f[ (¢2 + ¢2 + ¢2)dx dy dz

F=¢:+¢y+d7

Euler equation:

G () -G =0

d d 0
=0 _a(zd)x) _@(Z(I)y) _&(Zd)z) =0

= =2y, — Zd)yy —2¢,,=0
:¢xx+¢yy+¢zz=0

0’¢  0%p 09%°¢
= =0
0x? = dy?  0z?

=>V2p =0
It satisfy the Laplace equation.
This problem is an example of the dirichlet problem.
Conversely, Let ¢ satisfies the Laplace equation in a region R
To Prove: ¢ takes the equation of the form ¢ + ¢ + ¢7
Now, ¢ satisfies the Laplace equation.

:¢xx+¢yy+¢zzzo
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Multiply both the sides by continuously differentiable function V¢, which vanishes on the

boundary of R and integrating over R we get,

.ff (¢xx + ¢yy + ¢zz)6¢ dxdydz=0 (D
R

Now,

ﬂfR bxx0 dx dy dz = f fR [f prx69 dx] dy dz
u=2748¢; dv= ¢d,dx

du=d(8¢) ; v=¢x

du = §(d¢) = 5¢,dx

- | f (666,12 — [ ¢,6¢ydx |dy dz
= —%fchpr(qux dx dy dz

1
=——ﬂ S¢p2 dx dy dz
2J))g

o)
=——ff ¢2 dx dy dz
2 R

Jqubnyqbdxdde:—gﬂjR¢§ dx dy dz
JJL¢ZZ6¢dXdde=_gﬂL¢ZZ dx dy dz

(1):_gJJR¢’%+¢§+¢Zdedde=O

Similarly,

:—5ﬂ 62+ 2 + ¢2 dx dy dz = 0
R
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Hence ¢ is such that ¢ = ¢ + ¢5 + ¢ prescribed on the boundary of R

Hence in the dirichlet problem we find a function which satisfies the Laplace equation in a

region R and which takes on prescribed values along the boundary of R.

Constraints and Lagrange multipliers:

1. Derive the Euler equation along with constraint conditions and Lagrange

multipliers.

Proof:
Let x be an independent variable, u and v be dependent variable such that

X2
6] F(x,u,v,uy, v,)dx =0 (D
X

And the constraint is of the form ¢ (u,v) = 0 (2)
Assume that u and v are prescribed at the end points in consistency with equation (2)

Now, equation (1) becomes

X2
j SF (x,u, v, Uy, v )dx = 0
X1

:>fx (aFa L ML WL )ax =0
- ot T 5% ou, U v, Ve ) 4% =

(6F5 N 5) aFd(du) aFd(dv> dx = 0
du u v du, \dx/ Jdv, \dx x=

:J [(aFS +5500) (G () 2 3 (35 0] ax =
- au“ av” du, \dx u dv, \dx V)=

48

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



=>f (an + o ov) dx + xzaF(d)(s d +fxzaF(d)5 dx = 0
e \u T dug \dx) T L Gu \ax) O T

R (aFa +aa>d +[ 5]
a ua viax u

X1 X1

=

f 5 d aFa]xz fxza d<aF)d —0
udx aux X+ av, vxl X vdx 0V, x=

=>f (aF(s Lok 5)d +0
" auu a v X

*2 - d (OF 2 - d (0F
[P (2 drr o= [ oL () ax—o
x,  Ax \0uy X

dx \0v,
sz oF d(aF)6d+fxz oF d<aF)6d 0 3
ﬁ —_———— — — — =
L \ow @\ )\ T @y, ) ) = 0 —0)

Now,
u and v must satisfy ¢(u,v) =0
Hence the variation u and §v cannot both be assigned arbitrarily inside (xq, x;)

Therefore, the coefficient of du and dv in equation (3) need not vanish separately.

Now,
¢(u,v) =0
= 35p=0
¢ ¢
:>a—6u+a—6v—0 (4)
Now,

Multiply equation (4) by A and taking integration with respect to x in (x4, x,) we get,

2 (09 d¢
f (—/1 6u+—l6v>dx =0 (5)
x, \0u ov

3) + (5)we get

:>f 6F> agb/l) Su }d
au dx aux ou x

Y CaCTEAI AP P

Equation (6) is true for any value of A
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Let A be chosen so that the coefficient of u in equation (6) vanishes, then the single

variation §v can be assigned arbitrarily inside (x4, x,) and its coefficient also vanish.
Thus, we must have,
c’)_F_i(c’)F) d¢
Ju dx\du,
oF d ((’)F) lJ0)

dv  dx \dv,
d (6F) oF Ab. =0 .
au ¢ll. - —( )

x \0u,

dx
d (6F) oF A = 0 8
dx \ov,/) odv $p=0__(8)

Multiply (7) by ¢,

d (0F oF
> (3-) b0 =500~ Aduby =0___(9)

ou,

Multiply (8) by ¢,

d (OF OF . _, 0
= (5o b gt — At =0 (10)
(9) — (10) we get,
d (0F dF d (0F
rrd G K s

= (e 5) = )

Equation (2) and (11) gives two conditions in u and v.

)out o g =0

v,

(D))o

v,

Write this method after 4™ equation

0 i}
(4) =>—¢5u+—¢5v =0
Jdu v

P ou+ ¢, 6v=0
(3):>fo oF d <6F> (—q_’)v 6v)d +j‘x2 oF d <BF> Svd 0
x, \0u  dx \Ou, bu X x, \OV  dx \0v, vax=
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oF d (0F oF d (0F
s fxz —a—u¢v ov + a(m) ¢v ov + a—v¢u6v - %(m) qbu(Sv
x

bu

dx =0

1

“ou® T ax o, a0,
- [ GG 50 o - () - 5 efev e =0
v, \dx\ou,/ du o dx \ov,) 0v Pujov dx =

Equating to zero, the coefficient of Sv we get,

()~ 50) 0~ () - ) =0

(e A - ()=

Note:

Sometimes the constraints condition may be given in a variation form as
f.ou+g.6v=0
Instead of ¢ (u,v) =0
In this case, replace ¢, by f and ¢,, by g in the equation (7), (8), (11)

Result:

A constraint condition may be expressed by certain definite integral involving the
unknown functions or function take on the prescribed value.

1. Find the Lagrange multiplier 4 with the constants of integration arising in the
solution of Euler equation, so that the constraint f: G dx = k is satisfied and also
the end conditions are satisfied.

Proof:
Suppose that y(x) to be determined such that I = f;lz F(x,y,y)dx__(1)
minimum or maximum where y is prescribed at the end points,

y(x1) = y1
() = yz}—(z)
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And v also satisfy the single constraint condition J = f;f G(x,y,y)dx =k (3)

where k is the prescribed constant.
In order to satisfy equation (2) and (3) be define a variate function. We express y in

terms of two parameters €; and €.,

Sy(x) = e (x) + €am(x)______(4)

Where n, (x) and n,(x) are continuously differentiable function which each vanish at

x=x;and x = x,

X2
lewe) = [ Fluy+em +emy + e, +en’,) di_()
X

1
X2
J(e1,62) = f G(x,y +em ten,y + 6177’1 + 6277’2) dx=k___(5)
X1

1(€4, €;) takes a maximum or minimum value subject to the constraint J(e1,€,) = k

when €, and €,

Let introduce the Lagrange multiplier 4, then

aJ
(61, €) + /1 (61» €)=0____ (7

6—(61,62) el e =0_____®

When €1 = Oand €y = 0

ol ( ) f"z ((’)F N oF ’)d
—(€4,6,) = — — X
e, 1, €2 N aym N1

dy
fx (aF oF dm)d
= T] ,_ X
x, \0Y Lt dy’ dx
X2 9F . X2 9F dmy
= —r] X
o 0y Y, 0y dx
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Similarly,

61( )= f oF d(aF) P
e, V€2 ay dx\ay’) )12

6]( e,) = *2(0G d (66) p
e, v YT | \oy Tax\ay) )
0]( e,) = *2(0G d (66) p
a 2 61! 2) — ) ay dx ay TIZ X
(7)=>fxz or d(aF) d +,1sz d(ac) dx = 0
ST oo \57) | ax =y N ax =
x, \0y dx\dy dy dx\dy’ 1

- [ )2 (- a0

Similarly,

®=]" {(@_%(gj))H(g_g_;_x(gj))}mdx_o o)

If n, is chosen such that,

f"z G d((’)G) dx £ 0
oy dx\ay’) )12

Then, the value of A can be determined from equation (10)

Hence n, (x) is arbitrary.

In equation (9), the coefficient of n, is zero.
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Hence we desired the Euler’s equation,
oF d(aF) 41 oG d(@G) —0
dy dx\dy’ dy dx\ay'/|
d d (o0
= 55 (F +26) —a<a—x(F +/10)) ~0

The solution of this equation involves 3 constants where constant parameter A and
two constants of integration in correspondence with the 3 condition equation (2) and equation

(3) which are to be satisfied in this case.
Note:
1. In order to maximise or minimise an integral f; F dx subject to the constraint

f: G dx = k. First, write H = F + AG where A is a constant and maximise or

minimise f: H dx subject to no constraint. Hence the Euler equation will become

OH d <6H> B
dy dx\ay')
2. If one of the condition y(x;) = y; and y(x,) = y, is not imposed, the condition
g—; = 0 must be substituted for it at the end.

1. To determine the curve of length I which passes through the point (0, 0) and

(1,0) and for which the area I between the curve and the x —axis is maximum.

We have to maximise the integral I = foly dx subject to the end condition

1
y(0) = y(1) = 0 and to the constraint J = f01(1 +y?)zdx =1lwherelisa

constant greater than unity.
k=1+4

1 1 1
=J ydx+lj (1+y'?)2dx
0 0

= J: [y + A1+ y’z)%] dx

Here,
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H=y+ 2101 +y’2)%
Euler equation:
d (6H> oH
dx \dy’ dy

= d [0+’1(1+ ’2)_71(2 ’)] 1=0
dx 2 Y Y B

d Ay’
d_ Y —1=0
Fla+y2y
d Ay’ _q
a 1
(1+y2)2
Integrating on both sides,
/1 4
4 1= x+c
(1+y2)2
Ay’
Sx=——7-—cC
(1+y2)2
A !
=>Xx= Ll +c
(1+y2)2
Ay’
SX—C=—-73
(1+y2)2
Squaring on both sides
/12y12
—c )2 =7
= (x—cy) D)

= (x—c)? (1 +y"?) =22y
= (x —c)? + (x —c)?y? = 22y

> —c)?+y?(x—c)* = 2] =0
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Integrating on both sides,

Lett =22 — (x — ¢;)?

dt = —2(x — cy)dx

dt

—5 = (x —cy)dx

= (- (- )Pt e

56

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Therefore,

=) = (2 = (x = c1)?)?
Squaring on both sides,

—c)? = —(x—c)?)

S x—c)+(y—c)? =212

The three constraints are to be determined so that the circle passes through the end points and

the condition that the length of the arc is A.

Parametric representation of the above equation:

Let t be the parameter such that x = x(t) and y = y(t). Then,

1 (%
I = 5 (xy — yx)dt = maximum
t1
tz 1
J=1] G*+yH)zdt=1

ty
Where,
x(t;) =0and x(t,) =1
y(t) =0and y(t;) =1
Here the . denote the differentiation with respect to t

Letk =1+ A

1 t, [ 1
= EJ (xy —yx)dt+ 1| (x?+y?)2zdt
%1

t1
tz 1 1
- f [5 (X7 — y%) + A(32 + 72)2 ] dt
ty

1
2

Here H = %(xy —yx) + A2 +y%)

Euler equation:
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oH 1 1 . ol
—.=§(—y)+/1§(x2+y2)2 2x

0x
_ y . .2 .2_—1
——§+/1x(x +y°)2
6H_1_
ax_Zy
on_1 +/1 ( + 2)22
6y_2x x“+y y

x -1
=—§+)1)7(932+)72)2

O0H 1
ay_Zx

1
(1):>—[——+/1x(x +y2)2]—§y_0

d y+ AX 1. 3
dt| 2 X% + y2 _Zy—()

-11 1
(2)=>—[——+/1y(x +y3)7 ]—59&:0

d| x Ay 1
%[ + l——x (4)

_E /)'C2+y2 2

Solving (3) and (4) we get the equation of the circle (x — ¢;)? + (y — ¢,)? = A2

This method is use if [ > g

Ifl> g then y is not a single valued function of x so we use the parametric

representation with parameter t
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Variable End Points:

1. Derive Euler equation with variable end points or derive Transveraslity
condition.
Proof:
In some variational problem the boundary of the region of integration is not
completely specified but is to be determined together with the unknown function.

Let y(x) is to be determined such that
X2
ol = 6[ F(x,y,y)dx =10 (D
X1

Where x, is fixed and the value of y(x;) is given as y(x;) = y;

(2)
But the point (xz,y(xz)) is required to lie on a certain curve y = g(x) so that

y(xz) = g(xz)

preassigned.

(3) where g(x) is the given function of x but x, is not

Here x, my be vary

2 9F  oF  oF
61=f (—6x+—6y+ 6y)d =0
X1

dx ay ay’
szaFS d +szaF6 d +szaF6 dx =0
= —6x dx — o0y dx -0y dx =
x, 0% dy x, 0V

d
= [Féx]y! + f 6ydx+f 3y (d—y)dx:O
X1

*2 0F *2 gF d
= [ x=x26x2] +j @53/ dx +f ay Ix —(6y)dx =0
X1

X1

X syd +[ 6] fxza d<aF)d ~0
ydx + |50y ey =

= [, 8] + [F6y] sza—a@y)]dydx—O @

In order to relate 6x, to 8y (x,) we must use the fact that the variate end points must

*2 gF
dy

= [Focy,0%,] +

X1

remain on the curve y = g(x)

Thus, if the true function y(x) is changed to
y(x) +Ay(x) = y(x) + 8y (x)
=y(x) + en(x)
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And if x, correspondingly changed to Ax, then the requirement that the new end
point lie on y = g(x) is of the form

y(x; + Axy) + en(x; + Axy) = g(x; + Axy) (5)

(5) = (3) = y(xz + Axy) + enlxy + Axy) — y(x2) = g(xz + Axy) — g(x2)
= y(x2 + Axz) — y(x2) + en(xz + Axy) = g(xz + Axy) — g(x2)
= y'(x,)Ax, + en(x, + Ax,) = g'(x,) + higher order in €
= [y'(x3) — 9'(x3)|Ax, = —en(x, + Ax,) + higher order in €
= en(x, + Axy) = [g'(x3) — y'(x,)]Ax, + higher order in €

= en(xy) = [g'(x2) —y'(x2)]Ax, + higher order in €

= Ax, = — En(XZ), + higher order in €
g'(xz) —y'(x3)
en(x,)
= 0x, =
279 () —y'(x)
= Sy = Sy (x,)
2 g’ (x) —y'(x3)
Sy(xy) > oF *2
. L Y [ T Y
8= Foex, (g’(xg —ya) oy 3y e (557)]
:>[F L oF 6()+fxzaF d( >]6d 0
x ——— X =
gl_yl ayl N y 2 X ay dx ay y

Which gives the Euler equation subject to the condition (2) = y(x;) = y, and to the

condition

=0

F oF
[ ! I+ 4
g -y oyl._.

S+ —y) e =0
g y ay/_

This condition is called the Transversality condition.
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Example:

1
1. LetF = (1+y?)zand g(x) = mx + b where m and b are prescribed constant.
Find the transversality condition.

The Transversality condition is given by

F+ (g9 ')aF—O 1

Now,
JoF 1 -1
_=_1 /2721
3y 2( +y'“)2 2y

!

y
Jity?

g (x)=m

1) = 1+y’2+[m—y’]<y—,>=0

J1+y?
1+y2+my —y'?
L1y amy -y

Ji+y?

>1+my' =0

0

=>my' =0

>my' =-1

dy
= m(a) =-1

dy 1 .
= —_ = — — =
dx m at x Xy

1
y m X at x Xy

Integrating,

y=-——xtc

Which is the straight line perpendicular to the given line g(x) = mx + b
Therefore, the shortest distance from the point (x,, y;) to the nearest point on the line y =

mx + b is measured in the direction perpendicular to that line.
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Strum Lioville’s Problem

Consider the determination of the stationary value of the quantity A defined by

b !
L= Ja @Y7 —ay*)dx
f; ry? dx

Where p, g, r are given functions of independent variable x

Proof:

Let

b
L da @Y —ayBHdx 1
f: ry? dx I

The variation of A is of the form

I
SL=26 (E)

L6l — L8

I3

8L, L 8l

= l [61; — 613] M
I

Now,

b
8l = SJ (py'* — qy*)dx
a

b
- j [5(py'™) — 8(qyD)]dx
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b b
=f p2y’6y’dx—fq2y6ydx
a a

b b
=2 U py'6y'dx — f qy oy dxl
a a

—ZU py6 dx—fqydydx

b d b
=2 U py’d—(rfy)dx—j qy 6y dx
a X a
b d b
=2 [[py’c?y]’é — f 8y - (py")dx — f qy 6y dxl
a a
b b
=2 [[py’Sy]Z — f sy(py")'dx — f qy 8y dxl
a a

@

b
= [2py'Syls — 2 U [(py") + q y] 8y dx
a
b
5, = SJ ry2dx
a
b b
= j S(ry?)dx = J r2y8y dx (3)
a a

1 b b
(1) =>61= 5 l[Zpy’&']Z -2 U [((py')' +q y] 6y dxl - AJ r2y8y dxl

1 b
oA =— — | [2py'Sy]5 — 2 U [(py") +qy+ Ary] 6y dxl
J, ry? dx a

For stationary values of 1 we have 61 = 0

1 b
= f”ry—de [[ZPy’Sy]Z -2 U [((py") +qy + Ary] 6y dx” =

b
= [2py'6yl — 2 U [((py")' +qy+ Ary] 8y dxl =0
a
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Thus, the condition 54 = 0 leads to the Euler equation in the form

If we apply the natural boundary condition that py’ = 0 at the end points where y is not

(py) +qy+Ary =0

d
.e..,— ! Arv=0
i.e dx(py)+qy+ ry

preassigned y(a) is prescribed or (py')y—q =0

In particular, when the boundary conditions are homogenous of the form y(a) = 0 or

y'(a) = 0,y(b) = 0 or y'(b) = 0, the problem is one of the general Strum Lioville’s

Problem.

1. P. T the stationary value of 2 must be the characteristic number of the problem.

To verify this let 1, and ¢ (x) be corresponding characteristic quantity so that

Pdr) +qd + Ardppe =0_____ (1)

b,
J, 0y — qy*)dx

A= 5
J, ry?*dx

b, ., b
_Jypy'y'dx— [, qy*dx
f: ry? dx

b ,d b
_Jupy Tdx — [ qy?dx
f:ryz dx

' b d , b
[py'vla — I, vy @y dx = [, ay?dx

f: ry? dx

b ) b
0= [ y(y) dx — [, qy*dx
f; ry? dx
b "/
L0y +qy*dx
f; ry? dx
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b "/
=L@y + qy)ydx
f; ry? dx

Replace y by ¢

__ fab((PQbk’)' + qdr)prdx
[7repp dx

A

_ S Chr ) pudx
f; ré2 dx

b
_ J, Axr)dx
f: rdx

Therefore A = A, when y = ¢,

Note:

1. Arbitrarily the constraint f: ry2dx = 1 in homogenous case then

b
A= J (py'? — qy*)dx
a

Hence the stationary condition takes the form
b
SA = 6J (py'? — qy?)dx =0
a

Where y must satisfy f: ry?dx =1
Also, 61 = 6(1; — Aly)
In this form, the constant A play the role of the Lagrange multiplier and is to be

determine together with the function y so that I, — AI, is stationary and y(x) # 0

This condition for which f; ry%dx = 1 is called the normalising condition.

2. If the condition ff ry?dx = 1 is supressed then the condition

65

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



b
SA = 6[ (py"? —qy*)dx =0
a

Determine only one stationary function y = 0
If this condition f: ry?dx is added the problem has a infinite set of stationary

function for each of which A is stationary for small variations in y

Hamilton’s Principle (Basic principle of mathematical physics):

1. Derive the general form the Hamilton principle and hence derive the
Hamilton principle if the force field is conservative.
Proof:
Consider a single particle P of mass m moving subject to a force field.
Let O be the fixed origin if the vector from a fixed origin to a particle P at a
time t is denoted by 7, then by Newton’s law of motion,

The path of the particle is given by the vector equation

i.e., f = ma, where d is the variations in the acceleration

N
f= T
2
:mﬁ— =0 (1)

Where f is the force acting on the particles.

Consider any other path 7 + 67

Let the true path and the variate path coincide at two distinct instants t = t, and
t=t,

i.e., The variation §7 at those two instants is zero.

i.e., [67], = 0,[67],, =0\

Consider the equation (1)

(1= 4T i-o
Mgz =
Taking dot product with 67 we get
a*r ., =
= mW.Sr—f.(Sr =0
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Integrating,

tz g2 tz_,
mﬁ or dt — . f.ordt=0

tzd tZ_)
:>mf < >6rdt— f.6rdt =0

., dedt

d#|"t (tdi d
[67‘— — | ——(67) dt f f.67dt =0
dt .

t2 q tz |
=>0- mj ——(6r)dt—j f.6rdt=0

ty

I N A jtba*dt—o
y ™ ae’ \de . f.orde=
1
t2 1 tz |
= — j—m6<—> dt— | f.67dt=0
ty
N jt21 8 dr 2+*5*dt =0
. Smo| = f.or =
= t26 ! dFZ +f.67rdt=0
y 2™ \ae f.8 dt =

dt

t1

t2 1 dr
= 6T+f6rdt—0whereT——m —

This is the require Hamilton principle in its general form as applied to the motion of

the single particle.

If the Force field is conservative then, the above Hamilton principle states that the

motion is such that the integral of the difference between kinetic energy and potential energy

is stationary for true path.
Let the force field f be conservative. Let X, Y, Z be co-ordinate axis.
f=X+Yj+Zk

And
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d7 = dxi + dyj + dzk

-

f.d7 = Xdx +Ydy + Zdz

f Is conservative if and only if f dr is a differential 5¢ of a single valued function ¢

This function ¢ is called force potential and its negative is called the potential energy N

(say) .

Here, ¢ and V involved an irrelevant additive constants.

87 = 6xT + 8yJ + 6zk

f.67 = X8x + Y8y + Z6z = 6¢
Where ¢ = ¢(x,y,2)

Xox+ Y8y + 282 = Lox+ 225y 1+ 25
XY A0 = G O Ty Y T a7

_0 vy _090 ,_09
Where X = ax’Y_ ay’Z_ 5,

The Hamilton’s principle for general case

t, _
ST+ f.67dt=0

t1

Here, the force field is conservative

f.67 = 8¢

iy
(8T + 6¢)dt = 0

t1

ta
S(T+ ¢p)dt =0

21
The negative of the force potential ¢ is the potential energy V.
ts

§| (T-V)dt=0

t1

68

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Hence when the force acting are conservative, the Hamilton principle takes the form
ts
S| (T-V)dt=0
%1

Note:

We can show that this integral is minimum compare with that corresponding to any
neighbouring to any neighbouring path having the same minimal configuration. Nature tends

to equalize the kinetic energy and potential energy over motion.

Lagrangian function:

The energy differential L = T — V is called Kinetic potential or Lagrangian function.

Hence the Hamilton principle becomes

t2

6| Ldt=0
t1
Note:
If non-conservative force field are present the potential energy does not exist and we
must have
[
f f.ordt =

t1

Hence we get,
[
6| Tdt=0

t1
Definition:
f&? is a element of work done by the force f in the small displacement §7.

If the force f is conservative, the element of work done ]7?5? =d6¢p = -6V

Note:
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If we have the system of n particles the above derivation can be given by summation

and for continuous system it is given by integration.
Result:

Consider the k" particle of mass m; with position vector 7, and subject to the force

jT,; then the total kinetic energy is given by

And the total work done by the force is given by
N

> Feori

k=1

Conservative force:

If the component of the force can be derived from the scalar valued function ¢ then

we say that f IS conservative.

i.e., If there exists a function ¢ such that ¢ = ¢(x,y,z) and f 87 = %dx + %dy + %dz.
Then, f is conservative.

Generalised Co-ordinates:

Consider a dynamatical system of n degree of freedoms it is possible to choose n
independent geometrically quantities which uniquely specifies all components of the system.
These geometrical co-ordinates are called generalised co-ordinates.

1. Derive the Lagrange’s equation for conservative system having n generalized co-
ordinates.
Proof:

Let the n generalised co-ordinates be g4, q,, ..., gx.
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The total kinetic energy T may depend upon the generalized co-ordinates q4, q, ..., qn
also the rate of change with respect to time.
i.e., the generalised velocities is given by ¢, g5, ..., g, For conservative system, the
total potential energy V' is a function of only position and hence it does not depend
upon the generalized velocities.

Let g; are given small displacement §¢;.
Now,

V =V(q1, 93 )qn)

ooV =L sy + L sy 4+
aql ql aqz QZ aqn Qn

The work done by the force system is given by
-6V =6Q

= Q16q; + Q26q, + -+ 0,69,

av av av

Where Q; = _6_ql'Q2 = _a_qz’""Q" =3

The quantity Q;8q; is the work done by the force in a small displacement §q;. The
force Q may or may not have the dimension of true force and hence they are called a

generalised force.
If g; is linear displacement then, Q; is truly a force.
If q; is angular displacement then Q; is torque.

Consider the conservative system the kinetic energy T, is in terms of ng and ng but, the total

potential energy V is expressed in terms of q’s alone.

The Hamilton principle for conservative system is given by

t2
s| aT=vdt=0

ty

The Associated Euler equation with respect to n generalised co-ordinates is given by

q1, 92, -, qn iS
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i((’)(T—V))_a(T—V):O

dt aqk aqk
:>d<6T) d(@V) 6T+6V_0
dt aqk dt aqk aqk aqk B
id(aT) 6T+6V_0
dt \oqy 0qx  0qx
R d (6T) oT _ av
dt \dqy, aqyx 0qy

R d (aT) aoT B B _ av
at\ag,) " aq,  YwWhere Q=

0qy

This is Lagrange’s equation for a conservative system having n generalised co-ordinates and
there are n equations for each g;'s

Deqgrees of Freedom:

The number of direction in which the particle can move freely.
Or

The number of independent co-ordinates required to specify completely the position
and orientation of the particle in space is called degree of freedom.

1. Derive Lagrange equation of Simple pendulum.
Proof:

Consider a simple pendulum of point mass m suspended by an inextensible
string of length [.
The position of the mass m is completely determined by the angle 8 between

the deflector and the equilibrium position of the string.

Here the degree of freedom is 1 and we have only one generalised co-ordinate
0.

Here,

—l '2_1 2092
T—Zm(le) —Zml 7]
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The work done by gravity in lifting the mass from its equilibrium position to the
position @ is given by
workdone = —mgl — (—mgl cos 9)
= —mgl + mglcos @
—mgl(1 — cos 0)

=

Potential energy V = mgl(1 — gos 0) + constant
N X
6
_________ -
The Lagrange equation is
d ((’)T) (’)T_I_BV_ 0
dt\gg/ 096 096
oT 1 . X
— =-ml?2 0 = ml?6
06 2

d .

a(mlze) — 0+ mgl(sinf) =0
= ml?6 + mglsinf = 0
= ml(l6 + gsing) =0

=6 = —%sin@

This is the required Lagrange equation for the motion of the simple pendulum.

2. Derive Lagrange equation for compound pendulum
The system can be completely specified if we know the angle. The compound
pendulum has two degrees of freedom. Hence there are two generalised co-ordinated
6, and 6,.
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£51

Gl e gy OO
£DGE i poweR

1

R D bbb
_______ x’i_______/i\_/
Y2 ' :: & L
: E 'm,
V\'\""""""""""“———‘—‘\\‘7=‘=:|———-::::::::—/0--—-
X2
X1 = ll sin 01
y; = —lycos 6,
X, =1lysin@; + I,sin 6,
Y2 = —lycosf; — 1, cos b,
Kinetic energy
1 . . 1 . .
T = Eml(xf + yf) + Emz(xg + y2) (1)

X, = lycos b, 91
X, =1, cos 60, 6; + 1, cos b, 6,

yl = llSln 91 91
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_'ylz = ll Sin 61 6.1 + lz Sin 92 9.2

1)=>T= Eml(lf cos? 6, 0 + 12 sin? 6, 912) + Emz(l% cos? 0y 02 + 15 cos? 0, 67
+ 21,1, 6,6, cos 6, cos 6, + [Zsin? 6, 62 + 12 sin? 0, 62
+ 21,1, 6,6, sin 6, sin 6,)

1 _
=5 (l1 67 (cos? 0, + sin? 0, ))
1 . .
+5m; (lf@f (cos? 8, + sin? 6, ) + 15602 (cos? 0, + sin? 6,)
+ 21,1,6,6,(cos 8, cos 8, + sin 6, sin 6, ))

1 . 1 . ..
= El%elz (m1 + mz) + Emzlggzz + m211l29192 COS(Ql - 92)—(2)

Potential energy V = my gy, + m,gy, + constant
=myg (=l cos ;) + myg(—1; cos6; — I, cos 8,) + constant
= gl cos 6;(—m; —m,) —m,gl, cos 6, + constant
= —(my + my)gl; cos 6; —m,l,g cos 0, + constant 3

The Lagrange equation is

d (9T\_9r v _ )
dT\og,) 96, 86, l ;
d (0T aTr  av —
—(—=)-=—+=—=0
ar\ag,) 96, ' 96, J
orT 1 . .
—_— = —l% 2 91(m1 + mz) + mz(lllzez COS(QI - 02))
96, 2
= l%@l(ml + mz) + mz(lllzéz COS(Hl - 62))
aT o
6_91 == —mzlll29192 Sln(91 - 92)
T 1 .
—_— = _mzlz 292 + mz(lllzel COS(Hl - 62))
26, 2
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= mzlggz + mz(lllzgl COS(H]_ - 92))

aT o
_— m2l1l26192 Sln(el - 02)
20,

d (ar )i S o )
a 5 = (ml + mz)ll 91 + mzlllz [92 (_ Sln(91 - 92))(91 - 92) + COS(Bl - 02)02]
1

d (0T - ) _ . )
= m,136; + m,l;1,[6;(—sin(8; — 6,))(6, — 6,) + cos(6; — 6,)6; ]

a\od;
V = —(my + my)gly cos 6; —m,l,g cos 0, + constant

av _

6_91 = (my + my)gl; sin 6,
av .
6_02 = m,l,g sin b,

(1):>d oT 6T+6V_O

dt\ag,) 06, 06,

(my + my)1260; — myl,1, sin(8; — 6,)0,6, + m,l;1, sin(6; — Hz)ézz
+ mzlllz COS(Hl - 92)02 +m211129192 Sin(91 - 02) + (m1 + mz)gll Sin 91
=0
= mll%el + mzlfel + mzlllz [Sin(@l - 92) 922 + COS(QI - 92)62] + mlgll Sin 91
+myglysinf; =0

Divide by I,

= mlllé'l + mzllé'l + mzlz [Sin(91 - 02) 922 + COS(Ql - 02)62] + myg sin 91 + myg sin 91

=0
= (my + my)1,6; + mzlz[sina 922 + cosa 92] + (my +my)gsinf; =0 (4)
(I):>d oT 6T+6V_O
dt\ag,) 06, 06,
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= mzl%GZ + mzlllz COS(@l - 02)01 - mzlllzgl(Sin(el - 92))(91 - 92)

—myly1,6,6,sin(6; — 6,) + myl,gsin@, =0
= M 130, + mylyl, cos(6; — 0,)0) — myly 1 (sin(8; — 6,))(67 — 6,6,)
—myly1,6,6, sin(8; — 0,) + myl,gsinf, = 0
= m,126, + myl; 1, cos(6; — 6,)6; — myl11,(sin(8; — 6,))62 + myl,g sin6, = 0
Divide by m,1,
= 1,0, + 1,6, cos(8; — 6,) — 1,62 (sin(6; — 6,)) + gsinf, = 0
= 1,0, + 1,6; cosa — 1;0%(sina) + g sinf, = 0 (5)
(4) = (my + my),0; + myl, [sina 02 + cosa 92] + (my + my)gsinf; =0
(5) = 1,6, + 1,6, cosa — llﬁf(sin @)+ gsinf, =0
There two equations are the required Lagrange’s equation for the compound pendulum.

Non-Conservative Force Field:

The forces that do not store energy are called non-conservative force.
Eg: Friction is an example of Non-conservative force.
1. Derive the Lagrange equation for the non-conservative force field.

The work done by the force system in a small displacement §q,, 695, ..., 8¢, is of the form
n
Z fid7 = Q18q1 + Q28q; + -+ + 0,0y
k=1

The generalised force q4, q5, ..., g5, are not derivable from the potential function.

Q;6q; is the work done by the force system §q; is change to g; + §q; and other g;’s are held
fixed.

Consider the k" particle.

Let
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ﬁ: ES in)'f‘ Yk]_)+ZkE
ﬁ = in)+yk_7+ ZkE

8T = 8xxL + Syif + 8zik

n
Q16q1 + Q26q; + -+ + Q,6q, = z E5Fk)
k=1

n
= Y (Xl + Yi] + Zk). (82,8 + 8y + 82k
k=1

n
= Z (Xk6xk + Yk6yk + stzk) —(1)
k=1

But Xy, Yy, Z,, are the functions of generalised co-ordinates q, g2, .., qn

Now,

s = 2% gy + P g, 4 o4 g @)

Y. =
k aql Q1 aqz QZ aqn CIn—
0y Oy Oy

0y, ==—0q; +=—6b6g, + - +=—6 3
yk aql q1 aqz QZ aqn qu ( )

52 = 22 50 + 2 5, 4 o4 22 g 4
Zk - aql ql aqz QZ aqn q?’l ( )

Equation (1) is true for arbitrary choice of §q’s, we have assume that g; is changed to q; +

dq; and other g’s are fixed.
Hence we have, 6¢; = 0,8q, =0, ...,6q;-1 = 0,8q;4+1 =0, ...,6q, =0, 6q; # 0

Hence equations (2), (3) and (4) becomes

s _ axk s
0yi
Sy, = 2k
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6Zk=_

n

axk ayk aZk
(1) = 0,6 -=Z(x DXk sq. + v, 2k 5q, + 2, 2K 5 )
di kaqi di kaqi qi kaqi qi

k=1

n

5 —Z(X 0%k |y Ok, 5 9% )5
Qidq; = kaql ka ka qi

k=1

n
0xk 0yk Ozk>
;= X Y, —+ 7
Ql Z( kaqi-l_ kaqi+ kaqi

The result is valid whether or not the system is conservative.

The Hamilton principle for non-conservative system is

t2
o) (T—-V)dt=0

t1

t
=6 Z(T—f.?)dtzo

t1

t
= 2(6T—f.6?)dt =0

t1

= | 6Tdt +| f.67dt=0
tl tl
= 6T dt + (Q16qq + Q,6q, + -+ Q,6q,)dt =0____ (5)
tl tl

Now,

2 t2 /9T aT aT oT  oT
ST dt = j (— 8y + 8y + -+~ 5qy + —— 5y + —— 8, +
t

t L \0q, 9q; 9qn 94y 9q;
ML ) dt
3G "
Consider
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3 6T6 ftZS (6T>dt
~ [aq, q‘ %5 \aq,

—0 jtza d(aT)dt
. CTar \aq,

tz

(6) = oT dt
(21
(g s g
t1 g, aq, qn "
[ () 20+ e () o0+ -+ g () 20
dt \dq, dt \dqg dt \dq,

_Jtz oT d (6T) 5 oT d (aT) 5
. \aq: ~ae \aq,) )°% \aq, " ar \ag,) )0 T
oT d (aT) 5 gt
dq, dt \ag,) |
(5):>ft2 d <6T) S0 + oT d <6T> 5
aq, dt \ag,/ |° T " \aq, dr \a 2+

+6T d(aT)S dt+t26+6++6dt
dq, dt \aq, dn (Q16q1 + Q26q; 0n0qn)

ty

:ftz{(aT d<aT)+Q)6 <6T d<aT>+Q>6
. Wag, “ar Gg,) T 90N T Gg, T ae \ag,) T )0 T

(aT d(GT)+ >6 }d _0
aqn dt a Qn Qn -

Hence

80

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



or d (0T ,
___(_)+Qi=0, i=12,..,n

aqi dt aql
:6T d (E)T)_ — 13

dq, dt \ag,) =~ T hemn
:>d (6T) aT_ _ 19

it \3g,) "ag, v =Lz

Is valid whenever the variation of n co-ordinates g4, q5, ..., g, are independent.

Unit -3
Integral Equation
Definition 3.1:

An integral equation is an equation in which a function to be determined appears under an

integral sign.
Definition 3.2:

An equation in which no non linear function of the unknown equations is involved is called

linear equation.

Fred — holm equation:

An equation of the form

b
x (Oy (x) = F@) + A f k (x, )y (£)de

a
Where «, F, k are given functions and 4 , a, b are constants is known as Fred — holm Equation.
Note:

1. Here the function y(x) is to be determined
2. The function k (x, &) which depends upon the current variable x and auxillary variable

& is known as Kernel of the equation.

81

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Volterra Equation: If the upper limit of the integral is not a aconstant but is the current

variable ‘x’, then the equation is of the form

x (y (1) = F(x) + 2 f k (x, &)y (£)de

is known as Volterra Equation.
Note:

1. The constant A could be incorrupted into kernel in both the equation
2. In many applications this constant represents a significant parameter in which we take

various values.

Remark:

1. When « # 0, the equation involves the unknown function y both inside and outside the
integral.

2. When « = 0, the unknown function appears only under the integral sign and the
equation is known as an integral equation of the first kind.

3. When « = 1, the equation is said to be second kind.

4. If « is not a constant but the prescribed function of x then, the equation is of third kind.

Note:

Equation of 3" kind can be rewritten as equation of second kind by suitably redefining as

unknown equations and the kernel

Result:

Change the integral equation of 3™ kind into the integral equation of 2" kind.
Proof: consider the integral equation of 3" kind. Let o be the function of x.
Let the function o (x) be defined in (a, b).

Let the fred — holm equation
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x (y (1) = F(x) + 2 f k (x, &)y (£)de

Divide by /o (x)

x (y ) _ Fi) +/1f k(x,$)

= y (©)d¢
Jo® w0 V<@’

F() b k(x,§)
JX Oy = Yo, Afa mymde

- F» b k(x$)
= T M e < Oy O

o(x)

Y() = 4 A [P [ @)y (©)dE

V) Jec(a) )

Which is the integral equation of the 2" kind in the unknown function

k(x,§)

Y(x) =4/ (x) y(x) with modified kernel
x(x)/o(€)

Note:

1. If k(x, &) is the symmetric function of x and ¢, then the modified kernel in the above
k(x,$)
() ()
2. Symmetric kernels are of greater importance in theory of integral equation.
3. The function « (x),F(x),k (x,§) are continuous in (a,b) also, it is required that the

equation given by preserves this symmetry.

solution y(x) is continuous in that interval.

Dimensional fred — holm equation:

Let the unknown function w depends upon the two current variable x and y then the

dimensional fred holm equation is of the form

x (6, y)w(6y) = F(,y) + 1 jj k(x,y, &) (£, )dédn
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Note:

An integral equation can be deduced from differential equation. An integral can be deduced to
differential equation.

Result:

To deduce the integral equation to differential equation, we make use of the following formula

L e P, §)dE = [o0 ZF(x,§)dE + F(x, Bx)Z - F(x, A(x) 2

This formula is valid if both F and Z—i are continuous function of both x and & if A’'(x) and B’
(x) are continuous.
Example:

1. consider the differentiation of the function I,,(x) defined by the equation
I,(x) = f;(x — L&) dE with F(x, &)= (x — &)™ 1 (&) where n is the positive integer
and ‘a’ is the constant.

Proof:

Given I,,(x) = ff(x - O"M(§) d¢

We know that,

- ﬁ;’g)F(x,f)df = [3 LR (x,§)dE + F(x,BG))E - Fx, Ax)) 2

(@) = ZIx = OME)
=2 @@= O @ dE+ Flox) = - F(x,a) 2

= [J(n—Dx— HVE(§) dE

=(n-1) [7(x— (@) dé

=(N-1) Ly (x)ifn> 1 -emmememeee )
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L (@) = £ & 1))

== ((n = Dy 1 ()

=(n—1) = [X(c— O"PF(©) d¢
=(-1(-2) [ (x— O"3f(&) d¢
=(-1)(N-2) I,_,(x) ifn>2

Similarly,
L (In@) = (1= D(n - 2)(n—3) L3 () if n >3
e B (1)) = (= D —2) (0 = ) Ly () i1 > K
In particular,
A (1)) = (1= D = 2) . (0= (1= 1)) Ly ()
=(n—1DMn—-2)..2.11,()
%;(In(x)) == LX) .. (2)
Now,
L(x) = [ (x— O () dE
L) = [ (x— °f(§) d¢
L) = [ f(§) d¢
@)= Z [TF© dg
=i f ) dE+Fee ) - Fra) g

= 0 + f(x) — O (since F(x, &) =(¢))
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From (2) we have

d" (I (x)) _
dxn—1 -

(n—D!L(x)

GO = -1y L 1)

D) = (- DG

dxm

Also we have I,(a) = 0 when n > 1 (since upper limit and lower limit are same)

Therefore when n = 1, I,(x) and its 1% (n — 1) derivative a;; vanishes when x = a.
Thus we have I;(x) = [ f(x;) dxy
From (1) we have, = (I,(x)) = (n - 1) (In—1 (2))
I,(x) = (n-1) [ I—y (x)dx
L) =) [ I (xp)dx,
= Jo I3 fGe)dxydoc,
() =2 [ 1, (x3)dxs
=27 [ [7 f(x1)dxydx; dxs
L(x) =123 .(n—1) [T [0 77 L7 f () doxy dixy dcs .. dixy,
= L= OME@) dE= -1 [0 [T L f () dxydx, dxs . dxy,

1

(n—1)! f;(x — O d¢

= XL LT f () dxg g dx .y =

RELATION BETWEEN DIFFERENTIAL AND INTEGRAL EQUATION

1. Prove that the solution of volterra equation of 2" kind in which the kernel k is a linear

function of x can be obtained as a solution of differential equation.
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Solution: consider the initial valued problem consisting of linear 2" order differential

equation.

& y+ A(x ) —+ By =f() oo (1)

Together with prescribed initial condition

y(a) = yo; y'(a) = yg........ ()

From (1), y" + A(x)y' + B(x)y = f(x)
=>y" = -AX)y'— Bx)y + f(x)
Integrating with respect to x; over the limit (a, X)

>[5 =~ [ A@)Y dx — [} B@)ydx + ) f(x) dx,

Y = y'(@= = [TAx)Y (x) dxy — [ B y(xa) dxg + ) f(x1) dxy
=y’ —y; = = [ AC) Y (x) dxy — [ Bax) y(xy) doxg + [ f(x1) dxy
= y'(0) = — [JAG) Y (x)dx; — [ BGx) y(e)dx, + [ f(x) dxy + yg

= —[AG)Y CeDIE+ [ yCe) A Geddxy — [ B y(xy)day + [ f(x) doey +

!

Yo

Integrating again we get,

[YOIE = — [ AGy) yCeddxy — [ 72 B(xy) —A' (ey)y (g )dxydox, +

fa f;z f(x)dxdx, + f:(A(a)J’O + yo)dx

y) - y@ = [TAG) yG)dxy — [ 77 B(x) —A (x)y(e)dxydx, +
I3 177 FOeddxydxs + (A@yo + o) [, dx

y) =7 AC) yGe)dxy — [ [ BCa) —A (e)y(e)dxadag + [ 7 f(e)dxydx, +

(A(a)yo + yo) (X—2a) + yo

=— [T Ay (§)ds - s 1),f (x =B — A()]y(§)d¢
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1
(2-1)

L= 9P (O)dE + [A@yo + yi1(x — a) + o

= _f;[A(f) + (x— (B — A'(®)]y(®)d¢ + f;(x — O (&)d¢ + [A(a)y, + yol(x —
a) + yo

= [[-A@ - (x— OH(BE) — A®)]y@®dE + [ (x —OF(©)dé + [A@)yo + yol(x —

a) + yo
= [*k (o OIy()dE + Frwhere F(v) = [(x — ©)'F©)dE + [A@)yo + yl(x — @) + ¥,

Which is the volterra equation of 2" kind and the kernel k is a linear function of the current variable

X.

2. Transform the ZZTZ + Ay = f(x) where y(0) = 1, y'(0) = 0to the integral equation and

conversely.

Solution:
Given % + Ay=f(x) .ol (1) together withy(0)=1,y'(0) = 0 ........ )

Equation (1) gives y"' = — Ay + f(x)

Replace x by x; and integrating with res. to x; over (0, x)

15 = =24 f; yedxy + [ f(x)dx

') = y'(0) = =2 [ y(en)doxs + [ f(xr)dx;

Y'(0) = =4[ y(e)dxy + [ f(x)dx
Integrating again, [y()ls = —4 [ [o 2 yCe)dxydx, + [ [ 7 f Ge)dxydx,
= Y0 -¥(0) = =2 [ 2 yCe)dxidx, + f [ f(x)dxydx,

=yx) = -1 [ [ ye)dede, + [ 7 f()dxdx, + 1
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= Y() = 575 o (= Py dE + S5 [ (e — () dE+1
=—1 [ (x— O(@) dE+ [[(x— OP(E) dE +1

=1 [J(E=x)y(&) dE — [J(E—x)'f(&) dE+1 .... (3). This is the required integral

equation. From this integral equation (3), we get the differential eqn (1) by the following method.
From (3), y(x) =2 [ (§ = x)y(§) d§ — [;(§ —x)'f(§) d§ + 1

T= Al €= 0y®) &~ [FE -0 @ dE+ (D)

O
dx

=2 I3 2 (€ = 0y(O)dE + (x — 1)y Z = (0 - 1)y(0)

d(o)

x 0 X
— Jy =G = 0f©OdE+ - 0f ()T~ 0=0)f(0) =+ 0
=[S (~Dy(©)dé +0 - 0] — [(=1)f(€)dE +0 -0
= —A[[S y(©de] + [ f(©)de

Ly = A L{[Fy@ds] + = [T F(O)de

dx?

= =2 [y Zy(©)ds +y@) T = OS2 + [T f()dE + f(0) =~ f(0) 52

dx
==A[0+y(x) = 0] + [[0+ f(x) — O]
==Ay(x)+ f(x)

Therefore 32732’ =—-Ayx)+ f(x)

3. Solve the differential eqn y" (x) = F(x) with res. to the initial condition

y(0) =y0;y'(0) = yq

2
solution: given, =% = F(x) ... (1) together with y(0) = ¥0;y"(0) = ¥§ ... (2)

Replace x by x; and integrating w.r to x; over (0, X)
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W'I5 = [y Fea)dx
y'(x) = y'(0) = [} F(xy)dx,
y'(x) = [ yCe)dxy + v
Integrating again, [y(0)1§ = fy J,* F(x)dxidx; + [ yo dx;
y(<) = ¥(0) = y5[x — 0] + J5 [, F(x1)dx,dx,
YO) = yox + yo + [y J37 F(x)dxidx,
=yox + Yo+ gy Jo (= OFF(©) df
=yox + yo + [y (x = O'F() dE ... (3)

This is the required integral egn.
From the integral eqn (3), we get the differential eqn (1) by the following method.
(3) = () = yox + yo + [y (x = 'F(§) d§
o= Vot 0= OMF (D) dg
dx Yo dx -0
= Yo+ [[ 2 (- O'F(E) df + (x—DF ()2 — (x - OF(0) 22

=y + [, (F(§) dé

T2 =0+ L[TFE) de

_xd dx a(o)
= Jy 5 FOdE + FOO -~ F(0) %~
=0+F(x)-0

&Y = Flo)
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4. Solve the differential egn y"'(x) = F(x) where y satisfies the end condition y(0) = 0; y(1)
=0

soln: y"(x) = F(x) .... (1) together with the end condition y(0) =0; y(1)=0 .... (2)

Replace x by x; and integrating w.r to x, over (0, X)
b5 = J; Fea)dx
y'(@) = ¥'(0) = [ F(xp)dxy
' X 1
y'(x) = fo y(x)dx; + y' (0)

Integrating again, [y(x)]% = fox fOxZF(xl)dxl + fox y'(0)dx,

YO) ~Y(0) = 55, fo (= OF(E) dé + ¥'(0)x

y(x) = o (c = OF(E) dE+ y'(0)x ... (3)

putx =1
y(1) = [, (1= ©F () dE + y'(0)
> [[(1— HFE) di = —y'(0)
>y'(0) == [{(1— () dE
= [J(E=DF() dé
(3) = y() = [J(x— OHFE) dé + x [, (£ - DF(E) d§
= [fe— O () di+ x [[(§—DF() dE +x [[(§ = DF(E) dE
= [T = '+ x(§ = DUF(®) dE + x [} (£ - DF(E) d§
=[fx—¢ +x&—x JFE) di+ [[(xE—x) F(§) d§
y(X) = [ (x§ = OF(©)dE + [[(x&—x) F(§) di ....(3)
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This is the required integral eqn.
The above eqgn is of the form,

x¢— §E<x
xf—x,€>x}

V(9 = [} kCx, §)F (9)dg where k(x, £) = |
(3)= y(¥) = [ (€ = OF(E)de + [} (x & —x) F(&) d§
Y'() == [X(xE = OF(E) dE + = ['(x§ — x)'F(§) dE
= ML (- OF () df+ (> — DF)Z— (2.0 - OF(0) 52+ ['L (x¢ —0)'F () dE

d(x)

+(x? — x)F(x) % — (x> —x)F(x) —

= [YEF(®) di + (x* — DF() + [[(§=1) F(&) d§+0— (x* — x)F(x)
= [YEF(©) di+ [[(§-1) F(§) dé

') = [YEF() dE+ [1(§—-1) F(E) dé

d(o)

= f::—x(f)F(f) ¢ + (X)F(X)Z—i— (0)F(0)—=+ Olaa—x(g_ DIF(E) dé

d(1 d
+(1 - 1)F(1)%— (x—l)F(x)%

=0+xF(x)+0+0-(x—-1)F(x)

=F(¥)

5. Solve 22+ 2y = 0,(0) = 0,y(D) = 0

Soln:

d%y _
E-I- Ay=0....(1)

=>y"+ ly=0
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Replace x by x1 and integrating with res. to x; over (0, x)
S+ Af, yde, =0
V') = y' (O] +A [ ydx; =0

Again integrating, [y(0)1F = f7 y'(0) dxy — A, [*y dxydx,

Y0) - ¥(0) = — 55 [ G = () d + ¥ (0)(x—0)

y(x) =xy'(0) — A [;(x — Oy (&) d¢

putx =1,
y()=1y'(0) = A f,(L— Oy (&) d&
0=1y'(0) = A (1= '¥(§) d§
y'(0) = =f,(1l— () dé
Y(x) =x2 [[(1— (&) dE — 2 [T (x— ©'(§) dE
=x2[ [ = () dE + [i(1— O (@) de| - 2 [{x - Oy (©) dE

=2 2~ - 91 y(9) dE +x2 11— 'y (©) dé

l

The required integral eqn is
= 2[R ) de 4 x 2 11— O dé

=2 [P y(@©) de+ x2 (- Oy dE

(I-x¢
z l € <x
= y(x) =2 [, k(x,§) y(§) d§ wherek(x, §) z{(l—f)x £> }
—, X

Diff w.res.to x, we get
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Y =2 U —0y© dE+ = AL 3-8 y(©) dg

=223 U-0y@dE +ZU-0y@ S - 0+ Af, =) (- O'Y(©) d§

A d(l A d
20 0y 02 2y T
= AfyAyOdE+ -0y + AL, U - HE dE+ - Dy 2 - T -
x)y(x)
=1 5y@©ds + 20, (1 - () d¢
" d rx¢& Ad

Y'C) ==A— [72y(§) di+ +7-[.U— &) y(©) d§
= 2{ [T 2iy@® de + Ty - 0} + 2L a-9y® de+ (- Dy - (-
x)y(x)
= - A[3y00] + 3 [ = Dy ()]
=0-2y(x)
y'(x)+ y(x) =0
To find the boundary condition, we use the integral eqn
y(x) =2 [ y(©) de + x2 [ — O)'Y(E) dE
putx=0,y(0)=0
putx=1y()=0
The kernel of the above D.E has two expression in the region ¢ < x and & > x.
But the expressionis equivalent when & = x

(I=x)¢ £<x
We have, k(x, &) = {(z—lg)x ' }

8>
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(1-x)x

Put§ = x, k(x, x) =4 (s

l

If we think of k as a function of x for a fixed value of &, k is continuous at ¢ = x

(1-x)¢

k(. §) =1 @y
l )

E<x

E>x

2
if k is a linear function of x and then k satisfies the D.E 2712‘ = 0 and k vanishes at the end point is

x=0andx =1
finally we notice that k(x, &) is unchanged if x and ¢ are interchanged.

le) k(x, &) =k(¢, x)

Kernels having this symmetry property are called symmetric kernels.

6. Solvey + Ay + By =0, y(0) = y(1) = 0. Also find kernel.
Solution:y" + Ay + By =0,y(0)=y(1) =0

Replace x by x1 and integrating w.res.to x1 over (0, x)

X X ) X
[Y]O = _fO Ay dxl - fo Bydxl
=y~ y'(0) = -Alyl5 - J; By dx
y'(x) =y (0) — Alyls — [ By dx;
again integrating,

x X x X Xy

[Y(x)]o = fo y (0) d'xl _Afo ydxl - fo fo By d'xld'xz
Y0) - Y(0) =y' ) (x = 0) = A [J'y dxy = 5=, o = 7y (§) dg

Y0 =" (000 = o Jy (= O (@) dE — B [5(x — () d&
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) =y'(0)(x) — A f; y(§) d§ — B [ (x — 'y(§) d¢

Putx =1,

y(1) =y (0)(1) — [ A+ B (1— ©)'y(§)d¢

y'(0) = [, A+B(1— Oly©)dé

Y) = () [ A+B (1 — OWEdE — A S y(©) dé —B [} (x — OHW(&) dE

= @WA+BA- YO+ () [[A+BA- OHYEdE— @) [;A+B (x -
'y (§)d¢

= [xA+Bx(1— ' —A—B(x— OUy(©)dE+ () [, A+B(1— O'y(&)d¢
) =[7TAG — 1) + ('(-Bx + B)ly(©)dé + (1) [L A+ B (1 — O'y(§)d¢
therefore, y(x) = [ k(x,§) y(€)d¢

where k(x, €) = {[A(x - 1D+ (OY(-Bx+ B)],¢E< x}

Ax + Bx(1—§),§ > x

diff w.res.to x, we get
Y () == [XTAG = 1) + (O'(-Bx + B)y(©)de + — (@) [LA+B(1— O'y(§)d¢

= [F 2 [AG— D) + (O (=Bx + B)y(O)dé +[A (x — 1) + xB(1 - )]ly() =

—A(x—1) + 0.B(1 - x)y(0) =2 + [ (Ax +Bx — BxE)y(§)de + [Ax + xB(1 -

DIy(1)

a
dx

d
—[A(x) + Bx(1 — x)y(x) %

f;C(A — B&)y(§)dé + [Ax — A+ Bx — Bx*]y(x) + fxl(A + B — B§)y(§)d¢é — [Ax + Bx —
Bx?]y(§)

= [T(A - BE)y(&)dE — Ay(x) + [ (A+B — BE)y(§)dé
96

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Again diff with res. to x, we get
Y () = [(A— BOY(E)dE — Ay' () + = [ (A+B — BOY(§)dé
= [y = (A= BOY(©)dE + (A - By = - (4-BO)y(0)52)

(4+B - BOYOME+ (A+B - By~ (445~ Bx)y(o o — ay'()

QJ|QJ

1

o
=0+ (A—Bx)y(x) — (A+ B —Bx)y(x) — Ay'(x)

y"(x) = —Ay'(x) — By(x)

y'(x)+Ay'(x) + By(x) = 0

_ ([Ax=D+(BO' (1 -n)],¢<x
k(x,8) = { Ax + Bx(1—-§),&§ >« }

The kernel obtained in this way is a non symmetric kernel and it is discontinuous at x = §where A
=0

If A=0, the kernel is,

BHY(1—-x),E< x}

k(x,8) = { Bx(1—-¢&),§ >x

Here the kernel k is symmetric. The kernel k is non symmetric but if A = 0,the kernel becomes

symmetric.

Green’s function:

Consider the differential equation Ly + @(x) = 0
Where L is the differential operator,

L=z (@) +

d? dp d
dx2 = dxdx
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Together with homogenous boundary condition
ay + Z_Z =0
Where a and f are constants and the conditions are imposed at the end pointsa< x < b

le) the homogenous boundary conditions are

ay(a)+ B (Z—i)xza =0

ay®+ () =0

@ may be a function of x or depends upon x by the unknown function y(x) given by

0= 0(x,y(x))

Let us reformulate the problem. Let us determine green function G which for a given number ¢ is

given by
G,(x) where x < & ,G,(x)wherex > &
And which has the following 4 properties

1. The function G,and G, satisfy the equation L(G) = 0 in the intervals of definition.
le) L(G) = 0,x< & L(Gy) = 0,x > &

2. The function G satisfies the homogeneous condition prescribed at the end points x = a and
X=Db
le) G, satisfies the prescribed condition at x = a; G, satisfies the prescribed condition at x
=b

3. The function G is continuous at x = &, ie) G, (§) = G,(%)

4. The derivative of G has a discontinuous magnitude — % at the point x =&

le) G3(8) — G1(0) = — 5

Note: here it may be assumed that the function p(x) is continuous and p(x) # 0 inside the interval
(a, b) so that the discontinuity of the derivative of G is of finite magnitude. Similarly p(x) and q(x)

are continuous at (a, b)
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ABEL’S FORMULA:

Let u(x) and v(x) satisfies L(y) =0, then [A =P(uv’ —u’v)]’ =0

Proof:

[ —PL  dpd
dx? dx dx

2 dp

d —dy
Ly=pa+at

Ly = (pz—z)l +dy ... (1)

Given u(x) and v(x) satisfy Ly = 0

Lu=(u') + qu; Lv=(pv') + qv

ie.)(pu)' + qu=0...(2) (since Lu = 0 and Lv = 0)
(pv') + qv=0...(3)

Multiply (2) by v and (3) by u,

=>(pu)v—-(Pr)Yu=0

= (v)u—-(pu)v=0

= (pv" +pv)u—(pu”" + p'u)v=0

s>puv’ + p'uv’ — pu''v-p'u'v=0

>pw” —u'v+uv - uv)+ p(wv' — u'v)=0
:»p;—x (w' — u'v)+ p'(wv’ — u'v)= 0

% (p(uv’ - u’v)) =0

s[puv’ — u'v)]’ = 0givesA' = 0

Here A is called Abel’s formula given by A = p(uv’ — u'v)
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1. Show that the function G(x, &) exists the original problem can be transformed to the relation

Solution: Let y = u(x) be a non trivial solution of the eqn L(y) = 0 which satisfies the prescribed

y(x) = ff G(x,8)0(8)dE.... (A). The equation (A) defines the solution of the problem

when @ is the direct function of x. also egn (A) an equivalent integral egn of the problem

when @ involves y.

homogeneous boundary conditionatx =a ..... (1)

Let y = v(X) be a non — trivial solution of the eqn L(y) = 0 which satisfies the prescribed

homogeneous boundary condition at x =b ... (2)

The condition (1) and (2) are satisfied if

69 = |

ciu(x),x <€
cv(x),x > &

}.....(3)

To prove: G, and G, satisfies the four condition of the Green’s function.

(i)

(i)

Toprove: L(G;) = Oand L(G,) = 0
Since L(y) =0; L(u(x))=0, L(v(x))=0
Letx<§&

Then, L(G1) = L(czu(x)) = ciL(u(x)) =0
Letx>¢

Then , L(G2) = L(c2v(x)) = coL(v(x)) =0

Therefore G satisfies the 1% condition.

To prove: G, and G, satisfies the boundary condition.

By our choice of u(x), u(x) satisfies the homogeneous end condition at x = a.

du(x)

le) au(x)+ B ™

=0atx=a

Multiply by cy,

ciau(x) + clﬁ:—x(u(x)) = 0atx=a

= a(cqux)+ B :—x (clu(x)) = 0atx=a
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= a(G,) + ﬁ;—x(61)= Oatx =a

similarly, (G,) + f+-(G;) = Oatx =b

Hence G satisfies the 2" condition.

(iti)  To prove: G, and G, are continuous at x = &. For the function G, and G, satisfies the
3" condition, we must have G, (§) = G, (¥)
G1(®) —G(§) =0
cu(®) — v = 0
—cu(§) + c,v(§) = 0.... (4)

For the function G, and G, to satisfies the 4" condition we have,

Gi®) =~ GO = — 5
1

—cu' (&) +cv' (%) = R (5)

Solving (4) and (5), we get,

| v(®  u®)
v'(®) u'(®)

= v(E)u'(§) — u@®v'(§) # 0
=>u@v'(®) —vOU'E) #0
This quantity is determined by

v(E)  u(®
v'(®) u'(®)

This is called as Wronskian of the solution u and v of the equation L(y) = 0.

#0

W), v(©) = | £0

If suppose u and v are linearly dependent, then u(&) = k v(&) where k is a constant.

u® _
TG
v(®) u' (®)— u®) v'(§) -0
[v(®)]?

= v u'®) - u®v'(®) =0
=u@ v’ -vEuE =0
= W(u(®),v(®)=0
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Therefore the Wronskian W(u(£), v(€)) cannot vanish unless the function are linearly

dependent.
By Abel’s formula we have,
W), v®) = u@®v'® —-—v@Eu'® = p%ﬁ) ...... (6) where A is constant

independent.
From (5) and (6) we have

B) = —ct' () + ' (]) = ——

p®
©)= u®v'® -vOUE =75
Multiply (5) by — A
= c;Au' () — c,Av'(§) = p%%) e (7)

Comparing egn (6) and (7), we get

u(®) = —c4; —v(®) = A

=0 = _$;C1 = —§
—~u()v(®) ,x <§
—Zv()u®) x> §

This G satisfies both the condition (3) and (4) in Green’s function. This G is the

Therefore (3) = G(x,%) =

required Green’s function.

G does not exist < A vanish
& W(u(®), v(§)) vanishes
& W(u(®),v(®) =0
S u@®v'®-vEu@E =0

v'(®) _ u'®)
SO W

=3 log(v(E)) = log(u(f)) + logk
= log(v(E)) — log(u(f)) =log k
< log (%) =logk
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< ku(®) = v(®)

& uand v are linearly dependent.

2. Show that the relation y(x) = [ G (x, )@(§)d§

— U, x <§

—Sv(u® x> §

Where G(x,§) = { } implies the differential eqn Ly + @(x) = 0 together

with the prescribed boundary condition.

Soln: given y(x) = f:G(x, $D(§H)ds

Where G (x,§) = {—%v(x)u(g) X > g}

—Su@E x < §

y(x) = [ =2v()u® 6(§)de — [ ~u(@)v(E) 9(£)ds

diff. w.res.to X,
2= 2L Tuu(®) 6(§)dE — > [uEv)@] = + 1 [v(Eu@ (@) 5

= 22 [Pu)v(®) 9()dE + 5 [uE@v)B(0)] = — 2 [u@)vb)d(b)]
=1 ff%v(x)u(z) B(&)d¢ — < [uEVx)PE)] + 0

—2 7 Zu@)v(®) 9(§)dE — 0+ 3 [u(Xv(x) B ()]

= =27V Cu® 8@)dE — 5[, W @v® 0©)ds

Again diff with respect to x,
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1[0 1 dx 1 d
dxz Zfa_ W' O)u(®) 0(8))dé —Z[u(x)v’(x)®(x)]£+ Z[U’(X)u(a)ﬁ(a)]d—z

a

= 272 (W @) B())dE + = [ (D)X = — [ (X)r(b)(b)] =

= [Tv" (Ou(® 8()d¢ — 5 [ ()B()] +

— L2 V() B(E)dE +3 [ (v()B(x)]

Now, Ly(x) = p(x)y™(x) + p'(x)y"() + G()y(x) (since L = 22 + 2L o)

p(x)y"(x) + p'(x)y'(x) + q(x)y(x)

X b
PO | v (0)u® 0(©)dE + | W' ()v(E) B(8))dE :
A IJ 5[ + ux)v'(x)0(x)

— 0 ()v()B()
_p) [f;‘ 0" (U B(9)AE + [ W (v () (?)(E))dfl
A

_a® [f;‘ v(0)u(®) 9())dé + [ w(x)v(®) (b(f))dfl
A

Ly(x) = =3 [[Z0)v" (@) +p' (v’ () + () v()u(®) B(£)d¢ |
— 2@ ()P () + p' () (x) + q()u(x) v(E) B(£))dé |

— =[PV (x) — v ()]B(X)]

= 2 [[FL@@)uE 6(§)ds |

— 2] L) v(®) B(§)d¢ ]

- A% [A(D(x)] = 0+ 0 — @(x) (since Abel’s formula)

Since Ly(X) = —@(x) = Ly(x) —@(x) =0
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Hence the function y(x) satisfies the differential equation.
Now y(a) = = [, u(a) v(§) B(§)d¢
y(@) = —*2 [7 v(®) 0()d¢

v =2 " () p(§)ds

To prove: y(x) satisfies the condition at x =aand x = b.

le) to prove: [ay + BY']x=q =0

We know that, u(x) and v(x) satisfies the condition at x =a and x = b.
[au + Bu']y=q = 0; [av + pv']y=p =0

Now, [au(a) + fu’'(a)] =0

Multiply by —2 [/ v(®) 8(§)dg = — 222 [® p(®) ()dg — —LL@ [” v(®) p(©)dg = 0

A
= ay(a) +By'(a) =0
[ay + BY'lx=q = 0. Similarly, [ay + By'], = =0
Therefore y(x) satisfies the boundary condition at x =aand x = b.

Particular case:

Let @(x) = Ar(x)y(x) — f(x) then the equivalent differential eqn Ly + @(x) = 0

= L(x)+ Ar(x)y(x) — f(x)=0

L(x) + Ar(x)y(x) = f(x) with the associated homogenous condition imposed at the endpoint of
(a, b).

Hence the corresponding Fred — Holm Eqn is of the form

y(x) = 2] 6(x, &) r(® y(©)dE —y@) = — [, G(x,&) F(§)dE ... (1) where G is the relevant
Green’s function. Here the kernel k(x, &) is a product of G(r, &)r(¢) and G(x, &) is symmetric. If
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r(x) is not a constant, then the product k(x, ) is not symmetric. In this case, by assuming r(x) as a

non-negative integer over (a, b), we can write, y(x) = /r(x) y(x)

Multiply (1) by 7(x) = y(x) /T (x) =2 [ G(x,&) yTCOr(® y(©)dé — [ 6 (x, OVr(x) £(£)dE

=21} 600 &) TGTOYT® y(©)ds — [ LT p(gyqe

= 200 GCo VrCVrEV @) df — J “EITE f(ga

= AL R OVE dE — [ kG §) T df Where k(x,§) = G0 OVrGo) Vr®

If G(x, &) is symmetric, then k(x, &) is also symmetric.

7. Find the integral eqn for the differential eqn Ly = y’’ with boundary conditions y(0)= y(I)
=0

H . _ 0y . dzy
Solution: Ly =0 = y”’ =0, ie) i 0
Integrating , Z—z =c¢; =2dy =cdx
Again integrating (0, ) fol dy = fol crdx ..... (1)
o =calxlo+c; 2y = y(0) = ;-0 +c, 20=cil+c,
l x l
Jydy = [ cidx+ [ cidx

V1 = ci[x]E + ci[x]k 2 0=cix+c;(I —x).....(2)

cv(x),x < 463) u(®)
G(x,¢) = {civ(x),x > E}Where 1= ==, = ——~
—@u(x),x <&
608 = {_@v(x) x> E
" )
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Here u(x) = x, v(x) =1 —x (from (1))

By abel’s formula, u(x)v'(x) — v(x)u'(x) = % e (3)

u(x)=1L,vx)= -1,px)= -1

[since Ly = y" = py" +p'y' + qy = y" equating the coeff p = 1]

u®v'® - vEOU'® =75

S -1D-(-9=3
>-¢+(-l+§ =4
>A= -1

_ (I_E)X ’x < E _X(I—E) ,x < E
GO =1 i =1 @00
_G) g _B0=0) g

-1 1

Therefore y(x) = [ G(x,§) 0(§)d¢
3. Solve the differential equation y” + Ary = f(x) with boundary condition y(0)= y(I) = 0
Soln: y" + Ary = f(x)
>y = f(x) - r@)y(x)
Integrating, [y'15 = Jy f(x)dax, — A J; T(e)y(x:)dx,
Y = Jy flae)dx, — A Sy TCe)y(x)dxs + y'(0)

Again integrating,  [yCOIF = J Jy" fCedridn, — A fy 7 rGa)y(a)dadx; +

y'(0) f dx
= y(@) — y(0) =[(x — OF(@)dE — [, (x — OT(@)y(@)dE +y' (0)x

= y@) =[x — OF(E)dE— A [ (x — OHr(E)y(E)dE +y'(0)x

Putx =1,
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= y() =[[(L— OF@dE — 1 [, - Or(©)y©)dE +y'(0)!
0 - U= OF@dE+ [i(1— OF©de — 2[7(1—Or©y©)ds —A [ (1 -
Or©y(©)dé +y' (0)!

x l x
1
Y =7 I [a-or@ds+ (- or©d - 2[a-orey©ads

l
-2 f - E)r(f)y(f)dfl

=[50 = OMr©Y© — F©IE] + [[U— HIr©y(E) — F(©)de
Y@ = [Fa= OF©dE — 2[5 - Or@©y@de +2[[7 - O ©y(© - F(O)]d¢]
= DM@y - F©)1dE ]

= [F|a- o -2(a- )| F©d® + [ - or@y@d

L Ax

+ 2l - Drr@lag] +2[[Ea- Or©y©1a]

= [ - DfF@de + [FEQ-Or©y(©)de

L Ax

+2[[ice - DUr©aE] +E[[1E - O ©y@©)de]

= [, 6:(x,®) 0( )€ + [, G, (x,®) O( )€

= % _
Where G, (x,%) = {i (=x),¢< x}; G = | ! A-r(),s <x
TE-DE>x 20— OrELE> x

Alternative Definition of the Green'’s function.

4. Derive the integral egn for non-homogenous end condition.

Soln: when the prescribed end conditions are not homogenous, we use the following method.

Let G(x,&) be the Green’s function corresponding to the associated homogenous end
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1)

Let us find the function @(x) such that the relation y(x) = @(x) + f: G(x,&) D) dé....(2) s

equivalent to the differential egn.

L(y(X)) + @(x)= 0 together with prescribed non — homogenous end condition.
Now, L(y(x)) = — 8(x) = L, 6(x,£)9(®) d = —0(x) ...(3)

(2)= y(¥) =p() + [} 6(x, &) 9(®) dé

L(y(x)) = L(p(x)) + L f, G(x, &) B(8) d¢

— 0(x) = LX) + L [, 6(x,§)0(E) d

L(p(x) = —B(x) — L [, G(x,§) 0(8) d¢

0= L(p(x))

Since y(x) = f; G(x, &) @(&) dé satisfies the homogenous end condition if follows that the

function p(x) in egn (2) must be the solution of L(p(x)) = 0 which satisfies the non-homogenous

end condition. Hence p(x) exists when G (x, &) exists.

5. Solve the differential eqn y"" + xy’ = 1 with the boundary condition y(0) = 0 and y(l) =

1
3
. 2(l—x),é<x
Soln: here the condition are non homogenous. Let G(x,§) = {L ;
(=8>«

The Green’s function corresponding to associated homogenous end condition y(0) = 0, y(l) =

0. We have to find p(x) = 0 such that p*’(x) = 0 with p(0) =0, p(l) = 1
Now p”’(x) = 0 gives p’(x) = ¢4, integrating we get p(x) = ¢;x + ¢,

Putx=0,p(0)=0+c, impliesc, =0
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Putx =1, p(l) = ¢;1 + ¢, implies 1 = ¢, gives ¢; = =. Therefore p(x) = =
Now, the given is y” + xy’ = 1, ie) @(x) = xy — 1
The required solution is y(x) = p(x) + [ G(x,€) B(¥) d¢
Yy =5+ [ G ©) 8(8) dé
=24 L U-0EyE - DdE+ [EU-HEYE) - D dé

Type equation here. =2+ (€2 y(§) — 1) d¢ + > [[(1(Ey(§)) — L — & y() + §) d¢
=2+ (@ y©)di - @ dE+ TLEYE©)dE - T [ 1dE —1 [ y(€) §de +
%[ ede
- LA (@ y@)ds - @5+ 2 [ (5 y(©)de -

X X X 2y
x(8 )y - Tl y@©8de (5)
= IS (D) xl-0 + 2 (2 -2+ [T @ y(©)ds)

+x[ (5 y(©)de- 1! y(©)gas

Ix?  x3 12 3 1= L (&)
T X A =S+ [FE y(9dE) + [, (x§ — x§) T dE

=I-Za Dy 2@ y©d + [y 5 - XD ag

2
?(l—x),f<x}

therefore G(x,§) = 1,
7(15— 52),5 > X

Hence G (x, €) is not symmetric.

Bessel’s function
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Consider the egn x? + x + (Ax? — 1)y = 0 with the boundary condition y(0) = y(1)

= 0. Find the integral eqn corresponding to this equation.
Proof: here the given differential egn involve A. We compare the given eqn with
L(y(x)) + Ar(x)y(x) = f(X) ...... (1)

The given equation does not contain any X, therefore f(x) = 0

Then (1) = p + ZZ Zy + gy + ArX)yx) = f(x)...(2)
We get, f(x) =0, r(x) = x?

If we take p = x? then it does not agree with the co-efficient of Z—z

So let us choose p = x, so that 3—2 = 1 which satisfy the equation.

dx2+ Y+ /1xy——=0
Comparing this egn with eqn (1), we get

p(X) =X, 1(X) =X, G(x) = — =
Let us find the solution L(y) =0

d’y dpdy
p dx2+dxdx+ qy_o

o d%y dy
x——y=0
dx 2+ dx y

:x%+z—z+——y—0 = x?
= (x?D?*+ xD— 1)y =0
Now, xD = 0;x?D? = (6 —1);x =e? ;logx = 0
Therefore (8(0 —1) + 6 — 1)y =0

= (02— 6+ 6-1)y=0

= (0*-1)y=0

Auxillaryegnism?>~1=0=>m?=1=>m=1
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y=Ae 9+ Be? = A(x—1) + Bx=§+Bx

Here y is expressed as the linear transformation of x and x™. Hence all the linear transformation

of x and x! are solutions of y.

Take two solutions u(x) and v(x) with the boundary condition u(0) =0, u(1) =0

Here we choose u(x) = X, v(X) = i - X,

:x(—i—l)— G_ x)= _1_r_ —E.....(3)

By Abel’s formula,
uv' — vu' = ——.....(4)

comparing (3)and (4),we get A = —2

Now, the general Green’s function given by

6x.8) —%u(x)v(f),x< & —%x(%— E),x< &
X, = =
—v@u@x> &) (-1(i-x)ex> ¢

L
G(x,§) = (T Jerss

()6

X

Hence the corresponding integral egn is

Y = 2 f, 6(x,§)¢ y(§)de
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Linear equation in cause and effect

(The influence function)

1. Derive the influence function.

Physical problem by applying several causes, super imposing effect will be produced and thus

linear integral equation arises.

Let x, & are variables which take the value in a certain common interval or a region R. x and &

may represent the position.
Over the region R, let us suppose that the distribution of cause is acting active.

Our aim is to study the resultant distribution of effect in R denote the effect at x due to a unit
cause concentrated at § by G(x, §). The differential effect at x due to a uniform distribution of
cause of intensity C(§) over a elementary region (&, & + d&) is given by C(§) G(x, §)d&. Hence

the effect R(x) at x due to a distribution of cause C(&) over the entire region R is given by

e(x)=[ r CEG(x,8)dE ... ... (1) if the effect due to the sum of two separate causes is the sum

of the effect due to each of the causes.

The function G(x, &) which represents the effect at x due to a unit concentrated cause at & is

often known as the influence function.

This function is either identical (or) proportional to the Green’s function. If the distribution of
cause is prescribed and if the influence function is known, then by using egn (1) we can find

the effect by direct integration.

If the problem is to determine the distribution of cause which will produce a known (or) desired
effect distribution egn (1) represents a Fredholm integral egn of the first kind for determination
of C.

Hence the kernel is identified by the influence function. If the cause and effect are not provided

separately , that is, if they satisfying the linear relation of the form C(x) = 0(x) +
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Ae(x) ...(2) where @ is the given function or 0 and A is the constant, then the f and e can be

eliminated between (1) and (2) we get

Which is the fred holm eqn of second kind, for the determination od Ecause distribution. If the

cause C is eliminated between (1) and (2), we get

By using this we can determine the effect distribution. Both cause and effect are determined by
solving either egn (4) or (3) and using (2).

Linear egn in Cause and Effect (the influence function)

In physical problem by applying several causes superimposing effect will be produced and thus

linear and integral egn arises.

Let x and  are variables which take the value in on certain common interval (or) a region R.

X and & may represent a position
(in space of 1, 2 (or) 3 dimension) (or) time
Over the region R, let us suppose that a distribution of carve is acting active.

Therefore our aim is to study the resultant distribution of effect in R denote the effect at x due

to a unit carve concentrated at & by G(x, &)

The differential effect at x due to a uniform distribution of carve of intensity c(§) over a

elementary region (&, &+ d§) is given by c(&) G(x, £)dE

Hence the effect e(x) at x due to a distribution of cause c(&) over the entire region R is given
by e(x) = | R G(x,&)c(&)dE.... (1) if superposition is valid, [ie) if the effect due to the sum

of two separate causes is the sum of the effects due to each of the causes].
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The function G(x, &) which represents the effect at x due to a unit concentrated cause at § is

often known as the influence function.

The function is either identical or proportions to the Green’s function. If the distribution of
cause is prescribed and if the influence function is known, then by using egn (1) we can find

the effect by direct integration

If the problem is to determine the distribution of causes which will produce a known or desired
effect distribution. Equation (1) represents a fredholm integral eqn of the first kind for a

determination of c.
Hence the kernel is identified by the influence function.

If the cause and effect are not provided seperately (ie) If they satisfying the linear relation of

the form
c(x) = 0(x) + le(x) .....(2)

where @ is a given function or zero and A is a constant then the effect ‘e’ can be eliminated

between (1) and (2), we get

c(x) = O(x) + kf:G(x, c(&)dé .....(3) which is the frednholm egn of 2" kind for the

determination of cause distribution.

If the cause c is eliminated between (1) and (2) we get,

e = [, GO, OB@dE + Af, G(x,e()dE .....(4)

by using this, we can determine the effect distribution. Both cause and effect determined by
solving either (4) or (3) and using (2).

1. Obtain the resolvent Kernel associated with k(x, &) = e~ ®~% in the interval (0, )
Solution:

Here k(x,&) = e~ @9 = k,(x,&)
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ky(x, ) = f ey (e, £k (61, 6) dEy
0

= fOO( e_(x_ fl)e_(fl_ g)dfl

= fooc e Xt §1=61+¢ dé&,

&

ko(x,8) = f e+ E dg,

0
=e =g 5

=e =9
ks, ) = f Ky, €Dy (61, €) dE,
0

= [y et ecem(y — £ )dg
=oc g e dgy
ks (x, &) = o 70 %)
ka(x,§) = o =79
Similarly, k,, (x,§) = <1 ==
Fredholmeqn, ['x,&,2 =k(x,&) + 1 X2 g A" kypip (x, §)
—eXté 4 ) Yo A o+l p=(x=9)
=e 142 o+ 20+ ..]

_ e—xt+¢&

T 1-A«

2. Solve y(x)= x+ Afol(l — 3xy)y (&) d¢
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solution: y(x) = x + A [ (1 — 3xy)y (&) d¢

Define a integral eqn,
kfQ) = [ k(e Ef(©) dE

= [(1 = 3xy)f (&) d&

= [(1 = 3x)(&) d¢

= o6 - xgty e = [£ - 25
kf () = (5-X)
K2f () = [ kf () (1 — 3xy) d§

= f, (1= 3x¢) (;— x) d¢

= ( — x4+ 3x25) dé

_[E_me e 2o
_[2 . Xt ]0

1 3x 3x
S
2 4 2

1 7x  3x?
42

[2_4 2

K3f () = [ k2 f(x)(1 — 3x§) d§
= [ -3 -2+ as

- (el _3x§ 7x | 21x?§ | 3x?  9x%¢
_fo(z 2 4+ 4 +2 2)dg

- l __Ef 2 __Zf 21x f 3x° . 0
be-Zp T, Tl a0 o]
=__3_x_7_x+21x2+3x2_9x3

2 4 4 8 2 4

117
Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.




2 2 8 4

1 5x , 33x% 9x3

Therefore y(x) = F(x) + AkF(x) + 2k?F(x) + ....

=x+ A(5— x)+ 2 (3—7—x+ﬁ)+ /13(1—5—"+33x2—ﬁ)+....
2 2 4 4 2 2 8 4

FREDHOLM EQUATION WITH SEPERABLE KERNELS

The kernel k(x, &) is seperable if it can be expressed as a sum of finite number of terms each of

which is the product of function x alone and the function of & alone. It is expressed in the form

k(x,8) = Ep=1/n()gn(§)

Without loss of generality, we assume that the function f,,(x) where n = 1,2,..N are linearly

independent in the given interval.
Let k(x, &) = sin(x + &)
= sinx cos¢ + cos x sin
= [1()g:1(§) + f2(x)g2(8)
= Xi=1 fi(0)gi(§)
Therefore k(x, &) is seperable.

Note: Integral equations with separable kernel do not acquire frequently but we can easily

solve the equation.
Theorem:
Solving the fred holm equation with separable kernel.

Proof: consider the fred holm egn of second kind with separable kernel.

N
K@) = ) fu()ga(®

The fred holm eqgn is given by
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Y(X) = F(X) + 4 [ kCx, )y(©)de ... (1)
ZFX) + 2 [ N fu(0)gn(E) y(§)dE

V() = FO) + A4 [ 2 fu(0) g (©) Y(©)dE ... (2)

The co-efficient of f;(x). f>(x) ... f,,(x) are considered to be the coefficient of ¢; , ¢, , ...cy

G = [ g:(§) y(§)dE

C = [ 92O y(©)dé....Cy = [ gn(©) y(§)dE

Hence the eqn becomes y(x) = F(x) + A XN_; cpfn (%) .... (3)

which is the solution of integral eqn (1). The only thing which remains to find the constants

1, C, ... cy. Hence the solution of Fredholm eqgn can be approximated by the polynomial x and

E.

Consider the eqn (3) we have y(x) = F(x) + A XV_, ¢, fu(x)
Multiply by g, (x),

we get g; (x)y(x) = g1(X)F(x) + A Xi=q cnfn(x)g1(x)
Integrating over a and b,

p N

b b
[[a@y@ar= [ gr@dc+ 2 [ afg@as..

4 n=1

Let Qypn = [ Gm(0) £, B = [ G (%) F(x)dx

Therefore f: g1 y(@)dx = B+ A YXN_ chai,

=0 =0+ AXN_ cha,

Similarly, multiplying the eqgn (3) by g2(x) and integrating a and b we get,

=P+ 4 Z?’l:1 Cnlan

cy = By + A XN_; cpan,. These ¢’s eqn are (I)

(4)
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Extending eqn (1), we get

Cl(l - 10(11) - Czalz /1 esRaeai _CNalN A = 181
- C10l21 A + C2(1 - afzz /1) e new sen e CN“ZN A = BZ .....
- ClaNl - /1C2aN2 e asna e T CN(]. - aNN A) = ﬁN (II)

Hence we get N equations. This set of N egns have a aunique solution for the ¢’s if and only

if the determiner A of the coefficient of ¢, , ¢, ... cy is not equal to zero.

The above eqgn can be written as (I - AA)C = B, where I is the unit matrix of order N and A is

the matrix given by

a21 azz ------ aZN
. aNl aNl ...... aNN

1 C1
all alz ...... alN / 2\ CZ
A= and B = :

This set of linear equation can be solved.

Case (1): If F(x)=0in (1), thenwe get B; = 0,8, = 0, .... By = 0 hence the set of N eqns in

(1) becomes a homogenous eqgns.

Hence the trivial solution of (1) is ¢; = ¢; = ¢3 = ....cy = 0 and the homogeneous eqgn is

satisfied by the trivial solution y(x) =0
If A= |I — AA| +# 0 then this is the only solution.

If A= 0then one of cy,c,,....cy can be assigned arbitrarily and remaining c’s can be
determined easily. In this case infinitely many solution of the integral eqn (1) we get the value

of A for which A(4) = 0 are called the characteristic values (or) eigen values.

Any non — trivial solution of the homogeneous integral equation is called the corresponding

characteristic function.

If K of the constants ¢y, c,, .... ¢y Can be assigned arbitrarily for a given characteristic values

of A, then K linearly independent functions are obtained.
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Case (2): If F(x) # 0, then let it be orthogonal to all the functions g, (x), g,(x) ..... gy (x) and
we have B, = f; Im(x) F(x)dx = 0 for

m=1.2,.

therefore the set of N egns in (1) becomes

Cl(l - 10(11) - Czalz /1 esRaeai _CNalN A = 0
- C10l21 A + C2(1 - afzz /1) e new sen e CN“ZN A = 0 .....
- ClaNl - /1C20(N2 e CN(l - aNN A) == O (II)

Hence we can apply the previous discussion in this case also, but the solution of the integral

eqn involves the function F(x). In this case the trivial solution is

¢, =0,c, =0,...cy = 0 butsince F(x) # 0 we get y(x) = F(x)

Note: the solution corresponding to the characteristic value A is now expressed as a sum of
F(x) and arbitrarily multiples of the characteristic functions. If atleast one of the right hand
members of Il does not vanish a unique non-trivial solution of Il exists and hence there exist a

non-trivial solution of the given integral eqn if A # 0

Example: Solve the integral eqn y(x) = A [ (1 — 3x&)y(§)dé + F(x)
Solution: The Fredholm eqn is

y(x) = [, (1= 3x)y(&)dE + F(x) ... (1)

k(x,§) = 1-3x¢ = f1(x)g1(§) — f2(x)g.(§)

where f1(x) = 1,9:(§) =1 fo(x) = 3x,9,(§) = ¢

therefore k(x, &) = XN_1 f(x)gn(8).

k(x, &) is separable.
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Y@ = A f y()dE — 322 f ©y()dé + F(x)
0 0

¢ = fo Y(E)dE, ¢ = ]0 ©)y()dé

y(X) = A[c; — 3xcy] + F(x) ... (2)
multiply by g, (x)
y(x)g1(x) = Alc; — 3xc3]191 (%) + F(x) g1 (x)

Integrating we get,

[} y(x) g1 (¥)dx = 2 [} g1(x) [e1 — 3xcyldx + [ F(x) gy (x)dx

f y(x)dx = Aof 1 — 3xc,] dx+J01F(x)dx

3X2 1 1
c, = A[clx—Tczl +] F(x)dx
0 0

3 1
c1— cll+§czlz f F(x)dx
0

j F(x)dx=(1- ¢ +;/1c2 e (3)
0

Multiply by g, (x) in eqgn (2)
y(x)g2(x) = Ale; — 3xc;]g2(x) + F(x)g2(x)

integrating we get,

[ y(0) g,(0)dx = A [, Te; — 3x¢,] g, (¥)dx + [ F(x) g, (x)dx

f01 xy(x)dx = )Lfol[cl —3xc,] (x)dx + folF(x) (x)dx
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cx?  3x3

2 3

C, = /1[ +JxF(x)dx
0

0

=, =%— Ac, + fole(x)dx

=, +)%— Acy = fole(x)dx

).Cl

:>C2(1+/1 - 2

= fol xF(x) dx ....(4)
Since F(x) # 0, let it be orthogonal to the function g, (x), g, (x)

Hence f: Im(XF(x)dx =0, m=1,2,..

3AC2
2

=0; (14 Doy =22 =0.....(D)

> =

From (3) and (4), (1 — A)c, +

Solving (1) Type equation here.

1-1 22
M=| , °?
-2 1+ 12

=(1 /12)+312 =1 r
N 47 4

Now (I1) has unique soln if and only if AA # 0
1-2 %0
4
22 )
:>:¢1:>?» 4 > A 12

The unique soln is obtained by A # +2. The unique soln is obtained for c; and c, and

substitute the values of ¢; and c, in eqn (3)

Case (1): homogeneous case

If F(x) =0, 4 # 2, the unique solution is only the trivial solution ¢; = 0,¢; = 0,y(x) =0
The numbers A # +2 are the characteristic numbers.

If A = 2 eqn (3) becomes
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3)=> folF(x) dx =(1- 2) +§2€2

fol F(x) dx == _Cl + 3/1(:2

@) ==+ 2) -2t = [[xF(x)dx
=>3c,— ¢ = fole(x) dx
Now , folF(x) dx = —c; + 3¢,

fol xF (x) dx = 3c, — c¢;. Consider these 2 eqns as (II)

If A =-2,

folF(x) dx = 3c¢c; — 3¢,

:%folF(x) dx =c; — ¢,

fol xF(x) dx = —c, + c¢;. Consider these 2 egns as (I11)

Eqn (I1) are incompatible unless the function F(x) satisfy the eqn then,

fol F(x)dx — fole(x) dx =0

= [[1—x)F(x)dx =0.....(5)

Eqn (I11) are incompatible unless the function F(x) satisfy the eqgn, then %folF(x) dx —
fole(x) dx =0

= f;(% —x)F(x)dx =0....(6)

And in this case the corresponding pair of eqgns (1) and (111) are redundant.
Let F(x)=0

Eqgn (1) becomes homogeneous.

(||)=>—C1+ 3C2 =0 icl =3C2
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() =2c,—c;=0 =2c¢,=c
Here A =2,¢; = 3¢,

(2) 2y(x) = Mcy — 3cx) + F(x)
=M3cy; — 3c,x) + F(x)
=A3c;(1—x)+0

=6c,(1—x)

y(x) =A(1-x)

Hence the function (1 — x) is the characteristic function corresponding to A = 2.

Here A =-2,¢c;, =¢,

(2) =2y(x) = Mc; — 3c1x) + F(x)

=-2(c; —3xc1) +0

=-2¢,(1-3%)

y(x) = B(1-3x)

Hence the function (1 — 3x) is the characteristic function corresponding to

A = -2 corresponding to the two characteristic function we can write,
y(x) = Di(1—x)+ D,(1-3x)+ F(x).....(7)

Comparing (2) and (7)

Ale; —3xc,]+ F(x) = D;(1—x)+ D,(1—3x) + F(x)

Ale; —3xc,l = (Dy — Dyx) + D, —3xD,

Acy — 3Axcy; = (D; + D,) — (D1 + 3Dy)x

D;+ D, = Ay

D; + 3D, = 31c,

Solving these two eqns we get, 2D, = Ac; — 3A1c,
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__ (Bca—cy)A

D, = >
Dl + —(362;61)1 = Acl
D1 — 3(61_ CZ))'

2

Hence y(x) = D;(1—x)+ D,(1—3x)+ F(x) is the solution of given eqn where

3(C1— Cz)).
2

_ (Bca—cy)A

D, = Dy = 5

Case 2: non-homogeneous

If F(x) # 0, the unique soln exists if 1 # +2

IfA=2, fol(l — x)F (x) dx = 0 shows that no solution exists unless F(x) is orthogonal to the

characteristic corresponding to A =2

Using (I1) we have,
—c1+ 3¢, = folF(x) dx = ¢, = 3¢, — folF(x) dx

(2) = y(X) =A(cy + 3cx) + F(x)

] 1 ]
= A|3¢c, — f F(x)dx —3c,x|+ F(x)
i 0 ]

] 1 .
= 1|3¢c,(1 —x) — f F(x)dx|+ F(x)
i 0 ]

_ AIE(l—x) - JIF(x) dxl +F(0)
0

1

= IZE(l—x)— 2]

F(x) dxl + F(x)
0

Thus in case infinitely many solutions exist differing from each other by a multiple of relevant
characteristic function.

Similarly, if A = - 2, then there is no solution unless F(x) is orthogonal to (1- 3x) over the
interval 0 to 1.
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In this case also infinitely many solution exists as follows.

Using (111) we have,
¢ — ¢, =1 f) F(x)dx

¢ = ¢+ ) F(x)dx

(2) = y(x) =A(c; — 3c%) + F(x)
=-2[c; +3 J; F(x) dx — 3¢,x] + F(x)
:-QQ—EﬂFuyu+6qx+F&)
= —2¢,(1 - 3x) — = [, F(x)dx + F(x)

=Z(1—-3x) — %folF(x)dx + F(x)

Fredholm theory:
Let the continuous kernel k(x, &) need not be real.

[(x, &) = Yo g Akpi1(x, &) = k(x, &) + Aky(x, &) + A%k3(x, &) is called the resolvent

kernel.

It can be expressed as the ratio of 2 infinite converging power series.

D(x,¢,1)

Now [ (x,& 1) = v

. (1) where D(x,&,1) = k(x,&) + AD,(x,&) + A2D,(x, &) +

wand AL =1+ Ac; + A2cy + ...

It is found that coefficient c,, and the function D,,(x, ¢) can be determined successfully by the

following sequence of calculations.
L= f;k(x,x) dx, 2c, = — f; D(x,x)dx ,....nc, = —f: D,_1(x,x) dx

[(x, & )AL = D(x,&, 1)
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(k(x,&) + Ak, (x,8) + Ak3(x,8) + )1+ Acy + A%cy + 3¢5+ )

> k(x,8) + Acik(x, &) + AF2ck (x,8), ..+ (Aky(x,8) + A2ciky(x, &) + ABcyk,(x, &) +
(A%k3(x, &) + Boks(x,8) + Arcks(x,8) + .. = k(x,8) + AD;(x, &) + A2D,(x, )+ ...

Dl(x,f) = Clk(xi E) + kZ(x’ E)
Dy(x,8) = c1k(x,8) + [ k(&n &) k(x,E)dE ... (2)

DZ(x! E) = CZk(x! E) + ClkZ(xl E) + k3(x) E)

b b
= k(6 6) + ¢ j kCr, k(&L E)dE, + j k(r, £0)ky (61, E)dE,
b
= k(. ) + f k(&) [e1k(E0 €) + ko (61, E)]dEs

b
D206, ) = cok(x,€) + j k(x, &) Dy (61, 6)dE,

Do) = cuke(x, §) + f k0 £2) Do (60, ) 6y
To find the soln of the egn

y(x) = F(x) +A[], k(x, §)y(&)dE

the soln in terms of the resolvent kernel is given by
y() =F() + A [, [(x,&DF(E)de

A
>y = F(O) + Af ("5 DS pieyae ... 3)

In the above eqn if k(x, &) is separable, then the result is equivalent to the solution obtained by
the method in the sec 3.6.

If this ratio is expanded as single power series in A the result must be of the form,
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y(x) = F(x) + Z AK™F (x)
n=1

This will converge for small value of |A|, when |A| < [A4]

The numerator series of the denominator series in eqn (3) will converge for all values of A. If
A takes the characteristic value then the denominator value AA vanishes. In this case no solution

(or) infinitely many soln of the egn

Y(X) = Fx) + A, k(x, €)y(€)dE exists.

Theorem:

In the following paragraph we summarized the certain known facts which generalize results

already obtained in the special cases ie) when the kernel is either separable real (or) symmetric..

The egn y(X) = F(x) + A f: k(x,&)y(&)dE... (1) where (a, b) is a fiite interval and where F(x)
and k(x, &) are continuous in (a, b) possess one and only one continuous solution for any fixed

value of A which is not a characteristic value.
If A, is a characteristic number of multiplicity of r that is if the associated homogeneous egn
b
yx) = A J, k(x, Oy(©)dE.... (2)

Possess r linearly independent non-trivial solns, ¢4, @5, @3, ... @, then r is finite and the

associated transposed homogeneous egn

z(x) = A, f:k(x, &)z(&)dE.... (3) also possess r linearly independent non-trivial solutions

Y., ¥,,....¥. In this exceptional case (1) possess no soln unless F(x) is orthogonal to each of

the characteristic function ¥;,%,, .... ¥,

Finally if A = A, and (4) is satisfied then the solution of (1) is determinate only within an

additive linear combination G.
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11 + C2¢p, + -+ ¢, Where r constants, ¢, are arbitrary. If k(x, &) is real and symmetric the

eqn (2) and (3) are identical and the preceeding results reduces to the Hilbert’s Schmidt theory.

Note: The volterra integral eqn y(x) = F(x) + A f; k(x, &)y(&)dé can be consider as the special

form of Fredholm eqgn with a kernel given by

~ _ Oifx <&
k(x,8) = {k<x,€) if x> E}

Unless k(x,x) = 0 the modified kernel k(x, &) is discontinuous when x = &

Therefore if F(x) and k(x, &) are continuous, the volterra egn

y(x) = F(x) + xf: k(x,&)y(&)dE& possess only one continuous solution and that solution is

givenby y(x) = F(x) + Y1 A"(k,)"F(x) for any value of A.

If F(X) = 0, then it has only one trivial continuous solution y(x) = 0

A) Obtain the resolvent kernel associated with k(x, &) = e~*~%) in interval (0, )

Soln: here k(x, &) = e ®= 9 = k,(x,¢)

ko (6, §) = j ey (e, ky (£, )dE,
0
_ fae—o:— £-((9-9) q( &)
0

a
_ J e-xHa-EitEqg,
0

ko(x,8) = e=*=9 [TdE; = e ¢ D[q]

130

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



ks(x,€) = f ke, )k (6, 6)dE,

- fae—(x—fl)e—(m—f)ad(gl)
0

a
_ “f e-x -Gt E g
0

a
= ae‘(x‘f)j d&;
0

ks (x,§) = e~ 9 [a?]
kn(x,8) = e=¢"9[a™]

[, 8, 4) = k(x,8) + 4 Xnzo Akne2(x,6)

=e @4 Z At e~ = [gnH]

n=0
=e O 4 1+2 z A" [a™*]
n=0
=e =O[1 4+ da+ 12a?+ ..]
=e =D [1 - Q)] ™!

e~ (x=%)
[1 — [/'la]]

Iterative method:

Problem: 1
y(x) =x +Af, (1 = 3x€)y(§)d¢

soln:

131

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Define an integral operator

Kf(X) = [ k(e E)F(O)dE = [, (1—3x E)f(§)dE

The solution of the fredholm eqgn by using iterative method.
y() = FGO+ ) A"k 'F()
n=1

Now, kf (x) = fol(l —3x&)f(H)d¢
= [ —3x ) (§)d¢

= [0(6 - 3x £2)d¢

£ _at
-2

kf(x) = (1/2 - X)
Now, k2f (x) = f, (1 — 3x E)kf (£)dé
= =329 (5-¢)as

1

= Jy (- ¢—3x&+3x8)dg

2

Now, k*f (x) = [ (1 = 3x k2 (§)d¢
=y -3x&)(-%)ag

= - [ (1-3xO)(©)d¢
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=-3G-®

Now, k*f(x) = [J(1 - 3x Ok3f(§)dE
= fa-3x&) -2 (3-¢)as
=-33

y(x) = F(x) + 2*kF(x) + A2k?F(x) + A3k3F(x) + A*k*F(x) + ...
=x 4 212X+ 22 (=) + 2 (—%G—x)) +/14(—§(—§)>+~-
=(— (20 45 x )+ 2 -0a-S+E -

=x(1-i+E - H+rt-x)a-2+Z+ )

y(x) = (1—'12—2+§— )(x+ Al(%—x))

Problem 2:

y(x) = 1+4[ (1 - 3x8)y()dE

solution: define an integral operator,
Kf(X) = [ k(x, F(€)de = [, (1 - 3x §)f ()d¢
y(x) = F() + T, 2k )"F(x)

kf(0) = [(1 = 3x E)f(§)dé

= [, (1-3x&)d¢

=g -3x51}

kf() = 1-=

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Now, k2f(x) = [](1 — 3x OkF(§)dé
= (=3 )(1 - Hyas

1 2
L L

§_3x§* 38 | oxf?
_[1 2 4 6 lo
- _3*_3,3%

[1 2 4+2]

Now, k3£ (x) = [ (1 = 3x OK2F(§)d¢
= [, =3x9) () d¢
=2[(1-3x§)d¢

e =3(1-3)

Now, k*f(x) = [, (1 - 3x Ok3F(§)dE
= [y -3x9);(1-3)d

=1La-3x0(1-3) &

=
B

4 1
kA (x) = =
therefore the solution is
y(X) = F(x) + AkF(x) + 22k?F(x) + 23k3F(x) + ...
- 1+4(1——)+ 424 43 1(1——)+ 4424
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=5

o St ) enboIE
£DGE i poweR

=(1+5 45+ L)+ a(1-D) (145424
=(1+2+24 )a+eaa-2y)

4

ye) = A +4+42+ )1 +41-2)
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Hillbert Schmidt Theory:

When k(x, &) is not separable where k(x, &) is the kernel of the homogenous

Fredholm equation, this theory can be used.
Let k(x, &) be given by different analytic function in the interval x < & and x > ¢&.

There are different characteristics numbers 4,, (n = 1, 2, ...) and corresponding we get

different characteristic functions within an arbitrary constants.

In some exceptional cases a characteristic number A, may correspond to two or more

characteristic functions.

Proposition 1:

If y,,,(x) and y,, (x) are characteristic functions of y(x) = 4 f; k(x, &)y (&)dé corresponding

to two different characteristic numbers A, and A,, respectively. Then y,,, (x) and y, (x) are

orthogonal over the interval (a, b) if the kernel k(x, &) is symmetric.
Proof:
Lety(x) =1 f; k(x,&)y(&)dé (1) be the given Fredholm equation

Let 4,,, and 4,, be the two different characteristic numbers and let y,,, (x) and y,, (x) be the

characteristic functions corresponding to the characteristic numbers A,,, and 4,, respectively.
Let k(x, &) be symmetric then we have k(x, &) = k(&, x)
The functions y,, (x) and y, (x) must satisfy the equation (1)

Hence we get,

b
V() = A j kK Oym(©dE _____(2)

b
Yu() = A j k(e Oyn(E)dE _____(3)

Multiply (2) by y,, (x) we get,
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b
@) = 920 Ym0 = A f k(X €)Y ()€ Y (x)

Integrate with respect to x

dx

b b b
[ 906 3m @ =2 [ 3in ) [ [ kG0 e

b b b
[ 9@ @) dx =2 [ 3m©) [ [ ke x| as__@

Consider equation (3)

b
(3) = yu(0) = Ay f k(x, ©)yn(€)de
b
Yu() = 1y j k(& )yn () dx
b
= 3u(©) = 1 j ke, O)yn(dx ___(5)

Substitute (5) in (4)

yn (&)
An

b b
[ 3m @ a0 dx = [ ) 22

a

b b

A [ m @) 3060 dx = [ () ()
b b

A [ 9m @) 70G0) dx = [ ) 7Gx

b
O =) [ ) 3 6) e =0

Sinced, — 4, #0

b
:>f ym(x) yn(x) dx =0
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Therefore, we conclude that the characteristic functions y,,, (x) y,, (x) are orthogonal to over
the integral (a, b)

Note:

The above result is true only when the kernel is symmetric
Proposition 2:
The characteristic numbers of a Fredholm equation with real symmetric kernel are all real
Proof:
Let 4,,, be a characteristic number of a fredholm equation with real symmetric kernel
To prove: A, is real
If suppose A, is not real then 4,,, = a,,, + i
Let the corresponding characteristic function be complex given by

Y (%) = fin (x) + igm(x)

Let y,,(x) be the complex conjugate of y,,(x), then 4,, the complex conjugate of 4,, is the

characteristic number corresponding to the function y,, (x).

From the previous proposition we have,

b
O =) | 9 @) dx =0

a

Replace 1,, by 4,, and y,, (x) by y,,(x), we have
— b —_—
O =T [ 9m@ G dx =0 (1)
a

Am_m:am-l'iﬁm_(am'i'lﬁm)
= Uy + P — (am_i.gm)
=y +ifm— Uy + im

Am — E = 2ifm
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Ym(x) ym(x) = (fm(x) + igm(x))(fm(x) - igm(x))

Y () ym (X) = fir(x) + g3 (%)

Substitute in (1)

b
(1) = 2iBy, f 200 + g2 (x)dx = 0

Since y,,(x) # 0, we have f,2(x) + g2, (x) # 0

b
= j f2(x) + g2, (x)dx = 0

Also, 2i # 0
=>LnL=0
An =y +iBm
= An =y
Am is real.
Note:

A Fredholm equation with non-symmetric kernel may possess characteristic numbers

which are not real.
Theorem:

Any function £ (x) can be generated from a continuous function ¢ (x) by the operation
f: k(x,&) ¢ (&) dé where k(x, &) is continuous real and symmetric, so that f(x) =
f: k(x,&) ¢ (&) dé for some continuous function ¢ can be represented over (a,b) byalL.C

of the homogenous fredholm equation y(x) = Af; k(x,&) y(&) dé with k(x, &) as its

kernel.
Note:

By the previous theorem f(x) can be written as f(x) = Y, A, y,(x) wherea < x < b
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We can find the coefficient A,, A,, ... in the above expression in the following manner

Now,
)= A

e f(x) = Ay (x) + Ay, (%) + -+ Apyp(x) + -

Multiply by y,, (x) we get,

fyn(x) = A1y1 ()Y (%) + A2y ()Y (x) + -+ + ApYn () yn(X) + -

Integrating from a to b we get,

b b b
f f)yn(x) dx = Ay f y1(0)y(x) dx + A, j Y2y, ()dx + -+ +
b
Anj y2(x)dx + -

b b
f fF)y,(x)dx=0+0+ ---+Anj y2(x)dx

a

b b
= [ Feom G dx = 4y [ v

_ S F@ya() dx

Ay
[} y2(x)dx

Note:

If there are only finite number of characteristic functions then the function generated by the

operator f; k(x,&) ¢(&) dé form a very restricted class

Example:
Let k(x,§) = sin(x + &) and let (a, b) be the interval (0,27)

Soln:
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Let f() = [ k(x, &) ¢(&) dé (1)
Here k(x, &) = sin(x + &)
= sinx cos¢ + cosxsin ¢

k(x,&) = f1(x)g:1(&) + f2(x)g2(&)

Where f;(x) =sinx, f,(x) = cosx ,g,(§) = cosé,g,(&) =siné

= k(6,6 = ) fo()ga(®)
I.e., k(x, &) is separable

21
flx) = f (sinx cos & + cosxsin& ) ¢(&) dé
0

= U 7T[coséql_)(f) df]l sinx + J 7T[sin EP(O) dé]l cos x
0 0

= f(x) =c¢;sinx + ¢, cosx

Where

oy = [ cosEP(E) dE; ¢, = [ Sin B(€) dE

Therefore f(x) can generate only functions of the form f(x) = c; sinx + ¢, cos x regardless
of the form of ¢

The characteristic function of the associated homogenous fredholm integral equation
y(x)=21 fozn sin(x + &) y(&)d& __(2) can be easily found by the methods in the previous
section

Now,
21

() = f sin(x + &) y(§)dé

0
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2 2
= y(x) =A{U cos &y (&) dg‘l sinx + U siné y(§) dfl cosx}
0 0

= y(x) = A[c; sinx + ¢, cos x]
= y(x) = Acy sinx + Ac, cosx €))

Multiply (3) by g, (x) and integrate between (0,2m)

2T 2T 21
f y(x)g.1(x)dx = Af ¢ sinx g, (x)dx + AJ ¢, cos x g;(x)dx
0 0 0

21 2m 2
J y(x) cos xdx=/1j ¢y Sinx cos xdx+/1j €, COS X coS x dx
0 0 0

2T /1 + cos 2x
(—) dx

2T sin 2x
= Aclj dx + Ac, j
0 2

2 0

Acy [ cos 2x ]2" Acy [ sin 2x ]2”
- x
0 0

2 2 2 2
_Acy [ cosém N cos0 N Ac, o + sin 4w sin 0 ]
72 2 2 2 "2 2
Acy

_ [ 1+1]+/1c22
=5 |72z T 2
= mAc,

2
f y(x) cos xdx = mAc,
0

c1 —Amc, =0 4)

Multiply (3) by g, (x) and integrate between (0,2m)

2 21 21
J y(x)g,(x)dx = AJ ¢y sinx g,(x)dx + /1] c,cos x g,(x)dx
0 0 0

21 2 2
J y(x) sin xdx=lj ¢y Sinx sinxdx+/1j ¢, sinx cos x dx
0 0 0
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21 — cos 2x 2T /sin 2x
=/1€1f —dx+/1czj ( )dx
0 2 0 2

Acy [ sin 2x ]2” Acy [ cos2x ]2"
x — — —
0 0

2 2 t3 2

Acy [ sin 4w
7T —

2 2

Ac,
2 2

| -10—sinop+ 2| 1+1]
[0 — sin 0] >t5
=7T/1C1

21
j y(x) sin x dx = wAc;
0

Cy, — T[ACl = 0
AT[Cl —Cy = O (5)

Solving (4) and (5), the determinant of the coefficient matrix is

1 —-nA
= -1 2192
1 -1 + A
The unique solution exists iff —1 + 7242 = 0
Iff T222 # 1
Iff A2 % —
s
Iff 2% +=
Vs
The unique solution exists iff 1 = i%
Here the numbers 1 = % A= — % are the characteristic numbers
When 1 = %then equation (4) becomes,
c1—¢Cc; =0
C1 = 0Cy

Substitute this in equation (3) we get,
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y(x) = Acy sinx + Acy cos x

1
y(x) = —C [sin x + cos x]

And this is the characteristics function corresponding to 1 = %

When 4 = _?1 then equation (4) becomes,
c1+c; =0
€1 =—C,0rCy; =—Cq
Substitute this in equation (3) we get,

y(x) = Ac; sinx — Ac; cosx

y(x) = — 1 [sin x — cos x]

And this is the characteristics function corresponding to A = _;1

Here the characteristic function of y(x) = A fozn sin(x + &) y(&)d¢ are the multiples of the

functions y; (x) = sinx + cos x, y,(x) = sinx — cos x

Now any function of the form f(x) = ¢; sinx + ¢, cos x generated by [ 02” sin(x +

&) p(&)dé& can be expressed as a L. C. of y; (x) and v, (x)
f(x) = l(sinx + cos x) + m(sin x — cos x) (6)
But f(x) = c¢;sinx +c,cosx_____(7)

Comparing (6) and (7)
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c;+c;
2

€1 —C
2

(sinx + cosx) + (sinx — cos x)

f&) =

Finding the solution of non-homogenous Fredholm equation of second kind using
Hilbert’s Schmidt Theory

We can find a continuous solution of the non-homogenous fredholm equation of second kind

b
() = F(0) + f k(x, ©)y(€)de

Where F(x) is a given continuous real function.

Let us assume that we have found all members of the set of characteristic function y,, (x)

homogenous equation y(x) = A4 f; k(x, &)y (&)dE& where k(x, ) is continuous real and

symmetric.

With this knowledge we can find a continuous solution of corresponding non-homogenous

fredholm equation
We also assume that

1. The characteristic no. have been ordered with respect to magnitude

2. Characteristic no’s corresponding to k independent characteristic functions have been
counted k times

3. Subset of independent characteristic function have been orthogonalized

4. The arbitrary multiplicative constants associated with each characteristic function is

so chose such that the function is normalised over the interval (a, b)

Thus, we can write ¢,, = ¢, y,, Where the normalising factor c,, is given by
1

Cp =
J [ (7)) dx
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b b
fﬁmm=fﬁ%mm
b

1
_fa L () dx

Ve (x)dx

b
f P2(x)dx =1
a
Hence the expansion of f(x) in the series of the normalized characteristic function takes the
simple form f(x) = Y, app,(x)
To find the co-efficients a, and a,

Now,

f0) =) antn@® (@

n

= f(x) = a;901(x) + azpo(x) + - + apdp(x) + -
Mulitply by ¢,, (x)
fFO)Pn(x) = a101 () Pn(X) + a2 (X)Pr (X) + - + A P7 (%) + -

Integrating,

b b
fﬂ@%MM=f%%@Mx

a

b
=%fﬁwwx

b
[ sz = a

a

b
%=fﬂm@mm

By the basic theorem we have
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F6) = Ay

Comparing with (a) we get
Zan(pn(x) = ZAnyn(x)

andn (x) = ApYn(x)

an

Ap = mﬁbn(x)

4, = —2
n — yn(x) Cnyn(x)

Ap = ancy

These relation allows the transition from the expression involving non-normalized

characteristic function.

If the function y(x) = F(x) + 4 f; k(x, &)y(&)dé possess a continuous solution y(x), then

the function y(x) — F(x) is generated by the operation f: k(x,&)A y(&)dE& and hence it can

be represented by a series of normalized characteristic function ¢,,(x) wheren = 1, 2, ... of

the form y(x) — F(x) = Y, an,dn(x) (a < x < b) and the coefficient of a,, aare given by,

b
an = [ ) - Flgnax

b b
an = [ Y@tz - [ FG) pnrax

ap =dn — fn
b b
Where d, = [ y(X)$n()dx and fy, = [ F(x) ¢ (0)dx
Now we have to find out the unknowns d,, d,, ..., d,, where d,, = f: y(x) ¢, (x)dx

Consider the equation,
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b
() = F(O) + 4 f k(x, )y(€)de

Multiply by ¢,,(x) and integrated within a to b, we get,

b b b b
f YO Pp()dx = f F(0) n(x) dx + 1 ] () U k(x,f)y(f)dfl dx

b
f k(x, E)y(E)dEI dx

b
dn = fa +/1f $n(x)
Consider, [} ¢()|f,, kCx, £)y(©)d¢ | dx

b b
- f y(©) [ f e f)fﬁn(x)dxl ds

1 b
-+ | y©ou©a

An
yl
Hence d, = f, + A—dn

Also we have, a, = d, — f,

le.d, =an+ fy

A
Here a, + f, = fu +Z(an + fn)

A
= an =—f n
1_1 )Lnn Y
An
A .
anzl _)Lfnlfl;tln
n
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Hence the required solution is

fn

) = FO)+2) a1 2% Ay

A, — 1

Where f, = f;F(x)q,’)n(x)dx

We see that the constants function is the coefficient in the expansion F(x) = Y, fndn(x), if
F(x) is written like this

The expansion (1) exists uniquely iff 1 # 4,

i.e., Iff A does not take a characteristic value

Let A, be the K™ characteristic number. If A = A, the solution of (1) is not existent unless
fe=0

i.e. Unless F(x) is orthogonal to the corresponding characteristic function
IfA=2A,and f, =0

Consider d,, = f,, + %dn

Putn =k

A
di = fk +de

A
dk = 0 + _dk = dk
A
Which is a trivial identity when n = k and hence it imposes no restriction to d;. The

coefficient of ¢, (x) in (1) arbitrary which formally assumes the form % so that the equation

y(x)=Fx)+ 21 f: k(x,&)y(&)dé possess an infinitely many solution differing from each
other by arbitrary multiple of ¢,,(x)

If A assumes the characteristic value and F(x) is not orthogonal to corresponding

characteristic function then no solution exists.
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Note:
Q) By the virtue of a,,¢,, = A,y,, and A,, = a,,c,, hormalization of the characteristic
function is unnecessary. In the sense that, equation (1) can be replaced by y(x) =
F(x) + Azn;—’_llyn (x) (A # 4,) where E, = f; F(x)y,(x)dx where n =
1,2,3, ..
(i) Consider the Fredholm equation of first kind given by F(x) =
f: k(x,&)y(&)dé (1) with a continuous, real and symmetric kernel where F

is a prescribed continuous function and y is to be determined.
It follows from the basic expansion that (1) has no continuous solution unless

F(x) can be expressed as a L. C. of the characteristic function corresponding to

the associated homogenous equation of second kind y(x) = A f; k(x,&)y(&)dé
Example:
Solve the equation F(x) = fozny(f) sin(x + &)dé
Soln:
The given equation is F(x) = fozny(f) sin(x + &)d¢
Here k(x, &) = sin(x + &) and it is fredholm equation of the first kind

Now,

21

F(x) = f y (&) [sinx cos & + cos x sin é]dé
0

2n 21
= j y(&) sinx cos £dé +J y(&) cosx sinédé
0

0

21

= sinx f 7Ty(f) cosédé + cosxf y(&) sin&dé (D
0 0

This relation can be satisfied only if F(x) is prescribed as the L. C. of sinx and cos x or as a

L.C. of the characteristic function y; and y,
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y(x) = lf y(&) sin(x + &)d¢
0

With y; = sinx + cos x, y, = sinx — cos x corresponding to the characteristic number 1; =

1 1
~and A =-—=
T T

If F(x) is prescribed as F(x) = A sinx + B cos x then the equation (1) is satisfied by the any

function y for which

2T
A= y©essis @
0
And
2T
B= [ y@®sngds @

0

We can find one such function as y(x) = %(A cosx + Bsinx) (4)

If we add to (4) any function which is orthogonal to both sin x and cos x and hence to the
characteristic function y; and y, over 0 to 2. Then the condition (2) and (3) will still be

satisfied so that the solution is not unique

No solution exists unless F (x) is prescribed in the form F(x) = Asinx + B cosx

Let us consider the case that F(x) = f; k(x,&)y(&)dé possess a continuous solution. Then
F(x) is generated from y(x) by the operation f; k(x,&)y(&)dé& and hence it can be expanded
inaseries F(x) = Y, fndpn(x),a < x < b where f,, = f: F(x) ¢, (x)dx where ¢,, is the n'"

characteristic function of y(x) = 1 f: k(x,&)y(&)dé.

This series F(x) may be finite or infinite. Since ¢,, satisfied the equation, ¢, (x) =

Mo J) k()b ()dE and F(x) = [ k(x, ©)y(£)d€ and F(x) = T, fubn (x) We have

fabk(x, §y(§)ds = anxln fabk(x, &, ()dE
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b b
[ Kooy ©@de =) e [ kOB = 0

b
f ke, ©)B(E)dE = 0

This condition is satisfied iff y(x) is of the form y(x) = X, A, fPn(X) + ¢(x) Where ¢ is
the solution of the equation f; k(x,)p(&)dE =0

Hence if F(x) = f: k(x, &)y(&)dé possess a continuous solution then the solution must be of

the form y(x) = ¥, 4. fudn (x) + ¢ (x) Where ¢ is any continuous function satisfying
[2 kCx, ) ()dE = 0.

From the homogeneity of the equation f; k(x,)p(&)dé = 0. Itis clear that either this

equation is satisfied by the trivial function ¢(x) = 0 or it possess infinitely many solution,
Consider the equation f: k(x,)p(&)dé =0

Multiply both the sides by ¢,,(x) and integrate within a to b we get,

b b :
[ 0000 [ ke O3@ag ax =0

b _ b
[4© [ [ e s)cpn(x)dx] dg = 0

¢n($)
An

b
=>f 5 & ag =0
1 (b_
. f F(E) bn(E)dE = 0

b_
= f (E) bu(E)dE = 0
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Hence if f: k(x,&)p(&)dé dx = 0 possess a non trivial solution then that solution must be

orthogonal to all characteristics function ¢ (x)
Note:

(i) If this set of functions is finite, then infinitely many linearly independent functions
satisfying this condition exists.

(i) If the functions ¢,,’s comprise an infinite complete set over (a, b) then no continuous
non trivial function can be simultaneously orthogonal to all functions of the sers, so
that in this case the function ¢ in y(x) = ¥, 1, fadn (x) + ¢ (x) must be identically
zero.

(iii) I the non-homogenous equation of the second kind y(x) = F(x) +

A f: k(x, &)y (&) d& possess a continuous solution is unique unless A assumes a

characteristic value and is given by, y(x) = F(x) + Aznlf’il Yn(x) (A #=2)

(iv)  If the equation y(x) = f: k(x,&)y(&) d& of the first kind possess a continuous
solution then it is given by y(x) = X, L fu®n(x) + @ (x) it is (or not) uniquely

defined according as f; k(x, &) (§)dE does not possess a non-trivial solution.

Section 3.9

Iterative methods for solving the equations of second kind

We can solve the integral equations of second kind by the method of successive

approximation.

Consider the Fredholm of second kind given by y(x) = F(x) + Af: k(x,&)y(&)dé (D

where f and k are continuous.

Let y(© be the initial approximation. Replace y under the integral sign by the initial

approximation y(© then the next approximation given by

b
YO @) = Fo) + A f kG Oy(@©) e (2)

Similarly, the next approximation y® (x) is given by,
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b
YD (0) = F(x) + 4 f k(x, )y (§) dé

Continuing this process we get,

(3)

b
YW () = F(x) + 4 f k(x, )y ™ 0(&) de

We can use the same method for Volterra equation also where the upper limit b is replaced by

the current variable x.

Our aim is to determine under what condition the successive approximation gives the

continuous solution.
Let us replace y by y in the equation (1) as follows

First replace the current variable x by the dummy variable ¢ and replace ¢ by another dummy

variable &; then we get,

b
@) =y = F©) + f k(& £y (&) dE,

a

The next approximation is

b
YD) = F(x) + A j k(x, £y (€) de
b b
YO = F@) +A [ k(x§) [F(f) +[ ke fl)y@(fl)dfl] ds

b b b
= F(0) + 1 f k(x, E)F (6)dE + A f k(x,©) f k(€ €)y© (6,)dE, dE
To find y @ (), replace x by &, & by & and &, by &,

b b b
YD&) = F(&) + 4 j K(E &) F(E)dE, + 12 j k(E £) j k(60 &)y @ (E,)dE, dE;

The next approximation is
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b
YP (0 = F) + 4 f k(x, )y (§) dé

b b
= F(x) +ﬂf k(x,&) lF(f)‘F.f k(&,&)y 0 (&)dé,

b b
L f K(E &) f k(€0 €)Y @ (E,)dE, dE, | de

b b b
= F(0) + 1 f k(x, ©)F(E)dE + 22 f k(x, ©) f k(€ £)F(6)dE,dE

b b b
L f k(x, ©) f k(E £) f k(&0 £)y© (&)dE, dEydE ___(4)

Define an integral operator k by

b
Kf () = f k(o OF(€)dE ___(5)

By using this operator equation (1) takes the symbolic form,

yx)=F)+ky(x)_______ (6)
Equation (3) takes the form
y™(x) = F(x) + 2y ™D (x)
Similarly,
yP () = F) + ky©@(x)
Yy (x) = F(x) + Ak (F (x)) + 2212y @ (x)

y® (%) = F(x) + AkF (x) + 22k2F (x) + 233y @ (x)

Proceeding like this we get,

y™ (x) = F(x) + AkF(x) + 22k2F(x) + 363F (x) + 2*k*F(x) + -+ 2" 1" 1F (x)
+ 1y @ (x)
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Here A"k™y© (x) = R, (x)
The solution of the given equation can be expressed as

a

y(x) =F(x) + Z A"K™F (x) (7) asn —» o
n=1

The only thing to be determined is the condition under which the expression R,,(x) — 0 and
under which condition the series (7) convergent and gives a continuous solution.
We have k(x, &) is continuous for all x € (a, b)
= k (x,¢&) is bounded in (a, b)
There exists a positive constant M such that k(x, &) < M (8)
Similarly, F(x) is continuous in (a, b)
= It is bounded and hence there exists a positive constant m such that | F(x) I< m 9
Let us assume that the magnitude of the initial approximation y® (x) is bounded in (a, b)

Hence there exists a positive constant ¢ such that | y© (x) I< c in (a, b) (10)

Now,

b
|xy<®(x)|::_f k(x, ©)y© () de

b

s]lﬂxﬂfmﬁﬂﬁ
b

=J k(e O]y @ (©)| dé
b

gf Mc dé

a

=Mcfbd<f

156

Manonmaiam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



= Mc(b—a)
[y @ (x)| < Mc(b — a)

Similarly, we can find that,

b b
f k(x,©) f k(& E)y© (&) dE, dE

k2 y @) =

[x2 y©Ox)| < M%c(b — a)?
More generally by iteration we have

k™ y©@(x)| < M™c(b — )™
Similarly,

|[K"F(x)| < M"m(b — a)"
We have

Ry (x) = "y (x)
= [Ry(0)| = |2y @ (x0)|
= A" |y @ (0]

< |A*|M"c(b — a)”

1
M(b—-a)

For large values of n, R,,(x) = 0if | A |<

Also we have by equation (7)
y(x) = F(x) + A" F (x)

Now,

o

Z A (x)

n=1

< |F(x)|+

F(x) + Z AMK™F (x)
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< [F(O)| + ZM"K"F()CN
n=1
= IF)1 + ) A1 F (o)l
n=1
<m+ wanm(b —a)n
n=1

=m

1+ zmwn(b - a)”]
n=1

This is a geometric series and this geometric series convergesif | A | M(b —a) < 1

1

le. [A1< YICE)

y(x) = F(x) + Y= A"k™F (x) converges absolutely and hence uniformly in (a, b) if | 4 I<
1
M(b—-a)

We can show that the series y(x) = F(x) + Yn—1 A"k™F (x) satisfies the integral equation

yx)=Fx)+ 21 f: k(x,&)y(&)déand hence it represents the continuous solution of (1)

1

and k is continuous.
M(b—-a)

when | 1 |<

Note:

Let A, be a characteristic number of (1). Then equation (7) fails to converge if | A | is equal to

the absolute value of the smallest characteristic number A,

i.e. The series in (7) converges if | A |< 44

1
M(b—-a)

Hence we have | 1; | =

1

Hence — =)

is the lower bound of the magnitude of the smallest characteristic number A,

1

When k is real and symmetric we can show that 1, >
B 12 kGer2axaz
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Another method to solve the Fredholm equation of second kind

Consider the Fredholm equation of second kind given by,

b
() = F(O) + 4 f k(x, )y(€)de

y(x) = F(x) + Aky(x)
Let 7 be the identity operator
= I(y(x)) = F(x) + Aky(x)
= 7(y(x)) — Aky(x) = F(x)
= (I —-)y(x) = F(x)
= y(x) = (I - ) F(x)
= y(x) = [T+ Ak + (Ak)* + (Ak)* + -+ ]F (x)

= y(x) = F(x) + AkF(x) + (Ax)?F(x) + (Ax)3F (x) + -+
y(x) =F(x) + z AMK™F (x)

And this equation is valid only if | 1 I<| A4 |
Solving the Volterra equation using Iterative method:

Consider the volterra equation of second kind given by

b
() = F(x) + f kG, Oy(EdE (1)

Where f and k are continuous.

Let y(© be the initial approximation. Then the next approximation is of the form

YO @) = Fo) + A f kG, )y O©OdE (2
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Similarly,

YO0 =) +4 ke, Oy D (©)de

YW () = F(x) + 1 f ke, Oy ™D (3)

Our aim is to find under what condition the successive approximation gives the continuous

solution.

Let us replace y by ¥y in equation (1) as follows. Replace current variable x by the dummy

variable & and & by &;. Then we get,

() =y = FE +2 [ kYO
The next approximation is,

YD) = FGo +4 ke, Oy ()dg
—F@+2[ ko) [F(€)+/1 [ k(f,fl)y@(fl)dfl] dz

=P+ [ k@ OF©dE+2 | kGd) | ka0 E)d6 dg
To find y@ (&), replace x by &, & by & and &by &,

YDE) = F() + A j K(E, E)F(E)dE, + 22 f k(6 &) f k(&0 £)y© (&)dE, dE,

The next approximation is

YO0 =) +1 “k(x, Oy D (©)de
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=F() + /’lf k(x, §) IF(S) + /’lf k(§,$)F (§1)déy

L f K(E &) f k(£ £)y©(E)dE, dE, | de

= F(0) + 1 f k(x, £)dE + 12 f k(x, ©) f k(€ €)F (£,)dé; dE
e f k(x, ©) f K(E &) f k(£ £)y O (E,)dE, dErds _(4)

Define an integral operator k, by

b
Ko f () = f k(o O (E)dé___(5)

By using this operator equation (1) takes the form
y(x) = F(x) + Ak y(x)_____(6)

Equation (2) takes the form

Y@ (x) = F(x) + Ay ™ (x)
Equation (3) takes the form

Y™ () = F(x) + 26y ™0 ()

Similarly,

Yy (x) = F(x) + Ay @ (x)

Y@ (x) = F(x) + Ak, F (x) + 215y @ (x)

Y@ (x) = F(x) + M, F(x) + 2K2F(x) + By @ (x0)

Proceeding like this we get,

yM™(x) = F(x) 4 A, F(x) + 22k2F (x) + BK3F(x) + A4k F(x) 4 -+ + e 1F (x)
+ 2y @ (x)
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Let R, (x) = "k2y©@ (x)
The solution of the given equation cane be expressed as
y(x) =F(x) + Xpoq A" F(x) __(7) asn— oo

The only thing to be determined is the condition under which the expression R,,(x) — 0 and

under which condition the series (7) converges and gives a continuous solution.

We have k(x, &) is continuous for all x € (a, b)

= k(x,£) is bounded in (a, x)

There exists a positive constant M such that k(x,§) < M______ (8)

Similarly, F(x) is continuous in (a, x)

= It is bounded and hence there exists a positive constant m such that | F(x) I<Sm ____(9)
Let us assume that the magnitude of the initial approximation y® (x) is bounded in (a, x).
Hence there exists a positive constant ¢ such that | y©(x) I< c___(10) in (a, x)

Now,

|ny(0) (x)l =

f k(x, £)y© (£)de
< j |k (x, £)y @ ()] de
=] lk(x, )|y @ (&)|dé

< JxMcdf

a

=Mcfxd€

= Mc[¢]a

= Mc(x —a)
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[y @) < Mc(x — a)

K2y @) =

f k(x,€) f k(f,s‘l)y(o)(fl)dflds“

fk(x,f)ny(o)(f)df‘
sf |k (x, ) |1,y @ (&) dé

< foMc(E —a)dé

a

= Mchx(f —a)dé

= M?3c [(E_Z—a)zl

e l(x —za)zl

- a)?
[k2y©@(x)| < M2%c —

G — @)™
|K,’§y(°)(x)| < M"c —

Ry (x) = A"ty @ (x)
IRa ()] = [,y @ (x)]
= 12|12y @ ()

_\n
S IAnIMnCu

i (D= @)™
|R,(x)| < |A*|M C—7— ,a<x<bh

Similarly,
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(b-a)"

[A"KZRF (x)| < IA”IM”CT fora<x<bh

The series in equation (7) converges for any finite value of 4

The series (7) converges to a unique continuous solution for the volterra equation for all

values of A in (a, b) in which F(x) and k(x, ) are continuous.

Note
The final solution in each case is independent of ¥ (x)

Example

Solve the Fredholm equation y(x) =1+ 1 fol(l — 3x&)y(&)dé using method of iteration.

Define an operator

k(F00) = f k(x,€) F(€)de

1
- f (1 - 3x8) f(£)de
0

The solution of the fredholm equation using iterative method is given by

y(x) = F(x) + Z 1 (F ()
n=1
1
KF(x) = f (1 - 3x€) F(§)de
0

1
=f (1 —3x¢&)d¢
0

2]
7
0

=l€—3x

— 1 3x
B 2
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K2F (x) = f (1 - 3xE)KF (§) dé
0

1 3{:
- [[a-mpa-a
0

(! 3¢ 9x&?
_fo<1—7—3xf+ . >df

2 2 223
0
_, 3,33
R
2 (x) = -
K X—4

1
KCF () = f (1 - 3xE)K2F () de
0
1 1
- [[a-mnea
0
1 3x&2]"
_Zlf_ 2 L
1 3x
= 1[1 7

1
KR (x) = f (1 - 3xE)KPF(E) dE
0

=j:(1—3x§)%[1—37x]d5
=%f01(1—3x€)[1—37x]d$

1 2
:%f <1—32—€—3xf+9x; )df
0
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1
4 —
KF(X)—16

The solution of the Fredholm equation becomes

y(x) = F(x) + AkF (x) + A2k%F (x) + 23k3F (x) + 2*c*F(x) + -
= 1+A[1—— +/12(4)+,13(4 1—_]) ,14(116)+..

S R o e P
= 4 " 16 2% 4 " 16

22t 3
y(x)=<1+4+E+ ><1+/1(1—§x)>

. A2 24 . . . . . A2 . .
The series 1 + ” + P + -+ is a geometric series with common ration s and this series
converges if

/12
—<1
4

=> 12 <4
A< 12
21112

Now,
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2 2\ 2 4
14+ — _ e
+4+<4> + 4 — A2

R

=4f14#+1(2;36]

_ 4 [2+2/1—3xl]
4 )2

2
44222 -3x)
y(x)_ 4‘_12

This is the solution of the given fredholm equation and this is valid only when | 4 |< 2

Another Method
Consider the equation y(x) = 1 + 2 f01(1 — 3x8)y(&)dé

By the method of separable kernel we have a unique solution iff A # +2 and

3
(1 - A)Cl + EACZ = j

F(x)dx =J dx =[x]j =1
0 0

1 1

1 x2 1 1
_—Acl + (1 + /1)C2 = f xF(x)dx = f xdx = |— I
2 o 2| "2

0

Now,
1-2 31
A= 2
11 14+21
2
A=D1+ ( 1)(3)
N 21/ \22
AZ
=1- T
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AC]_ =

Nl = =

1-1 1
Ac,=| 1_ 1
—_) =
27 2
1 A+A_1
2 2 2 2
A
_Aq__1+z__4+a
R Sy R Hl
7}
1
Acz_ 3 _ 2
QTN T a2 T a2
7)

The solution of the fredholm equation is

y(x) = ey = 3xc,] + F(x)

_/1[4+/1 3( 2 >]+1
B VIS TR VIR T

4L+ A% —6x
B 4 — )2

222 -3x) +4
N 4 — )2

This is the solution of the given Fredholm equation

Fredholm Theory

Consider the Fredholm equation of second kind y(x) = F(x) + 1 ff k(x,&)y(&)dé

By iterative method we have
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b
o) = | K OFOE__ 1)
Replace ¢ by &,

b
Kf(O) = f k(x, €D (€)dé,

a

(2)

b
K2 (x) = f k(x, €)Kf(6)dE,

b b
_ f k(x, &) [ j k(fl,f)f(f)dfl dé,
b b
- j [ j k(x, &) k(fl,f)dfllf(f)df_(s)

Define k; (x,§) = [} k(x,é)k(&,§)dé

This k,(x, &) is called as iterated kernel

b
3) = K2 (x) = f koG OF©dE _____(4)

From (2)

Now,

b
KOG = f k(x, €)K2F (€)dé,

a

b b
- f k(x, &) [ f kz(fl,f)f(f)dfldfl

b b
- f [ f k(&) ko (61, 6) dell FOdE___ (5)
Define k3 (x, &) = [ k(x, &)k, (§,8)dé,

b
(5) = K3 (x) = f ks G, OF©)AE _____(6)
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Repeating this process
b
@ = | G OF©Od )
Where

b
g = f kG, €k (61, €) dE;

k., (x, &) is called as nt" iterated kernel for n = 2,3,4, ... and where we write

ki(x,$) = k(x,$)

It is not difficult to establish the consequent validity of the relation

b
a0 ) = [ ey E)kg (61, )62

For any positive integer p and q

Further if k(x, &) is bounded in (a, b) then |k(x,é)| < M in (a, b) then it follows easily that
|kn(x, &) < M™(b — a)™ ! for the values of x and € in (a, b)

With the notation of equation (7) the series y(x) = F(x) + Yn=; A"k™F(x) which is the

solution of the equation y(x) for sufficiently small values of |1| takes the form

b
() = F(x) + 1 f ko O)y(©)di______(8)

® b
—F+ Yy f ke G, E)F (€)dE
n=1 a

b ©o
=P+ [ ks (R OF ()

4 n=0

Define

FCOED) = ) ke (6,6
n=0
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=k(x, &) + Aky(x, &) + Bhs(x, )+ (10)

Substitute (10) in (9) we get,

b
Y0 = FG) + 2 [ T 62 FOdE (1)
a
This I'(x, &: ) is called as the reciprocal kernel or resolvent kernel associated with the kernel
k(x, &) inthe interval (a, b)
The series Yoo A" k,41(x, &) is called the Neumann series,

Note 1:

1
M(b—-a)

The series Y.n_o A" k,41(x, &) converges if |1] <

Note 2:

In equation (10), we rewrite the form as

kD) = k(68 +4 ) Mk n(58)
n=0

® b
k@O +A Y A f K Ok (61,6 dE;

n=0

> b
—k D+ 2y A [ K OrELED g
n=0 a

Or

Changing the notation é; — &,& - t

b
T(x, t: 1) = k(x, ) + Af k(x, OT(E, t : N)dE

a

Thus it follows that the resolvent kernel T, consider as a function of the variable x and ¢t and
the parameter A, is the solution of the equation (8)
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b
() = F(O) + 4 f k(x, )y(€)de

When the prescribed function F is replaced by the kernel k consider at function of x and t

Problem

Find the resolvent kernel of y(x) =1 + /’lfol(l —3x&)y(&)dé
Soln:

Consider,
1
() =1+ f (1 - 3xE)y(§)dé
0
Here k(x, &) = 1 — 3x¢ = Iy (x, &)

b
ko (6, ) = j k(x, &) k(&1 £)dé,

a

1
_ f (1 — 3x€) (1 — 3¢,8)d¢,
0

1
_ j (1 - 35,& — 3x¢, + 9¢&2x)dE,
0

_ [5 383 3xg 9ggx|

+
2 2 3 0
3¢ 3x  9¢x
= 1-——— 4 —
2 2 + 3
3¢ X
kz(x,f)= 1—7—74'3%5

b
ks () = f ke &) ko (61, )€
1 3
= 1—3 1__ 1 3 1 d 1
| -3 (1-56 o +3ea)
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1 3 9
= [ (1-5 G+ 366 — 3at 4 Sa+ O + 9x6se ) dy
0

32 3 3., 3 ., 9 . 9x&& oxggr|
—[51—57—5551"'5515—59651+m51x+§ > T3

3 3 3 3x+9x+9x€ 9x¢
4 2 2 2 6 22 3

1 3x¢
iy
—la-3
=5 (1—3x¢)
fa
ke £ = 188
e
ke ) = 228D
k3(x,
ks (x, &) = 3(25 §)
1
_1_6k1(x'5)

k-
k, = n42 forn=3

FCOE) = k(5 ) +2 ) Menss (,6)
n=0

= kl(xf 5) + A[kz(x: f) + /1k3(x, {T) + Azkél-(x' f) + A3k5(xr f) + /14k6(x1 E) ]

= ky + Ak, + 2%2ks + 23k, + 1k + 10k ...

Pky Mk, kg Ak
1 A 1 2, ..
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Y 14 )2 24

A2t

YRRV

3
= (1+Z+1—6+---><1—3x€+/1<1—§(x+f)+3x€>>

2\ 3
- <1 _Z> [1- 3§ + 2= ZA(x +$) +3/1x€]

1 3
:—/,12(1+)l—§/1(x+f) —3x€(1—/1)>

(1-7)

=T(x,&: 1)

The result is correct for values A except A = +2. Resolvent kernel is correctly given by (2)
for all such values of 1. However the series (1) converges only when | A |[< 2. We are able to

sum series (1) and that the resultant function correctly.
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